
 
  
 

 
Stepping Stones for Java Card 
Applet Developers 
 

Version 1.0 

April 2024 
 
 

 



Enabling trust in a connected future        

 

2 
 

Copyright © 2024 Trusted Connectivity Alliance ltd. 

 
The information contained in this document may be used, disclosed and reproduced without the 
prior written authorization of Trusted Connectivity Alliance. Readers are advised that Trusted 
Connectivity Alliance reserves the right to amend and update this document without prior notice. 
Updated versions will be published on the Trusted Connectivity Alliance website at 
http://www.trustedconnectivityalliance.org 

 
Intellectual Property Rights (IPR) Disclaimer 

Attention is drawn to the possibility that some of the elements of any material available for 

download from the specification pages on Trusted Connectivity Alliance's website may be the 

subject of Intellectual Property Rights (IPR) of third parties, some, but not all, of which are 

identified below. Trusted Connectivity Alliance shall not be held responsible for identifying any or 

all such IPR, and has made no inquiry into the possible existence of any such IPR. TRUSTED 

CONNECTIVITY ALLIANCE SPECIFICATIONS ARE OFFERED WITHOUT ANY WARRANTY 

WHATSOEVER, AND IN PARTICULAR, ANY WARRANTY OF NON- INFRINGEMENT IS 

EXPRESSLY DISCLAIMED. ANY IMPLEMENTATION OF ANY TRUSTED CONNECTIVITY 

ALLIANCE SPECIFICATION SHALL BE MADE ENTIRELY AT THE IMPLEMENTER'S OWN RISK, 

AND NEITHER TRUSTED CONNECTIVITY ALLIANCE, NOR ANY OF ITS MEMBERS OR 

SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY IMPLEMENTER OR 

THIRD PARTY FOR ANY DAMAGES OF ANY NATURE WHATSOEVER DIRECTLY OR 

INDIRECTLY ARISING FROM THE IMPLEMENTATION OF ANY TRUSTED CONNECTIVITY 

ALLIANCE SPECIFICATION. 

 

  

http://www.trustedconnectivityalliance.org/


Enabling trust in a connected future        

 

3 
 

Contents 
 

1. References 4 

2. Abbreviations 6 

3. Definitions 7 

4. Introduction: The Java Card Applet Stepping 
Stones 8 

4.1. Target Audience 9 

4.2. Problem Statement 9 

4.3. Notes for Readers 9 

5. Understanding the Java Card Applet Ecosystem 10 

5.1. Java Card Technology (JC 3.0.5, JC 3.1.0,…) 10 

5.2. GSMA and 3GPP: Understanding Major Updates for Java Card Developers 11 

6. Java Card Applet Developer Best Practices 12 

6.1. Non-Volatile Memory (NVM) Update 12 

6.2. Fields and Local Variables 19 

6.3. Applet Deletion 19 

6.4. Object Constructors 19 

6.5. Stack Management 20 

6.6. Handlers (Re-entrance) 21 

6.7. Execution Time 24 

6.8. RAM Management 27 

6.9. Object Creation within Transactions 28 

6.10. Shareable Interface and Multi-Selection 28 

6.11. CLEAR_ON_DESELECT Memory Access 28 

6.12. Exception Handling 28 

6.13. Transactions 29 

6.14. CAP File Generation 29 

6.15. Toolkit Install Parameters 29 



Enabling trust in a connected future        

 

4 
 

6.16. FileView API Usage 30 

6.17. Menu Entry Initialisation 30 

6.18. Optimised API Usage 30 

6.19. SUCI API 30 

7. Java Card Applet Development Guidelines for 
Secure Products 32 

7.1. Security Recommendations for All Applets 32 

7.2. Additional Security Recommendations for Sensitive Applets 33 

8. Interoperability Testing Tools, Services and 
Events 35 

8.1. TCA Loader 35 

8.2. TCA eSIM Interoperability Service 37 

8.3. GlobalPlatform Test Fest 39 

8.4. GSMA LITE Event 39 

9. Interoperability Checklists 40 

10. About Trusted Connectivity Alliance 45 

 

 

1. References 
 

Java Card 3.0.5 Java Card 3 Platform Virtual Machine Specification, Classic 
Edition Version 3.0.5 

Nov 2017 

Java Card 3 Platform Runtime Environment Specification, 
Classic Edition Version 3.0.5 

Nov 2017 

Java Card API, Classic Edition Version 3.0.5  
Java Card 3.1.0 Java Card Platform Virtual Machine Specification, Classic 

Edition Version 3.1 
Feb 2021 

Java Card Platform Runtime Environment Specification, 
Classic Edition Version 3.1 

Feb 2021 

Java Card API, Classic Edition Version 3.1.0  
GSMA SGP.22 RSP Technical Specification Version 3.0  October 2022 

SGP.05 Embedded UICC Protection Profile Version 4.1  March 2023 
SGP.25 Embedded UICC for Consumer Devices Protection 
Profile Version 1.0  

05 June 2018 

ETSI 
 

ETSI TS 102 221 V16.6.0 (2021-10) Smart Cards; UICC-
Terminal interface; Physical and logical characteristics 
(Release 16) 

October 2021 



Enabling trust in a connected future        

 

5 
 

ETSI TS 102 226 v16.1.0 (2022-10) Smart Cards; 
Remote APDU structure for UICC based applications 
(Release 16) 

October 2022 

ETSI TS 102 241 v16.2.0 (2021-08) Smart Cards; UICC 
Application Programming Interface (UICC API) 
for Java Card™ (Release 16) 

August 2021 

 ETSI TS 102 267 v16.0.0 (2021-08) Smart Cards; 
Connection Oriented Service API for the Java Card™ 
platform (Release 16)  

August 2021 

3GPP 3GPP 31 102 Technical Specification Group Core Network 
and Terminals; Characteristics of the Universal Subscriber 
Identity Module (USIM) application (Release 16) 

December 
2022 

Global 
Platform 

GlobalPlatform Card API (org.globalplatform) v1.7  July 2019 
GlobalPlatform Card Composition Model Security Guidelines 
for Basic Applications Version 2.0 

November 
2014 
 

TCA 
 

Integrated SIM: A Practical Approach  April 2022 
Recommended 5G SIM Technical Definition: Enhanced for 
3GPP Release 17 

December 
2022 

Interoperability Stepping Stones Release 7 December 
2009 

Interoperable Format Technical Specification v3.3.1 August 2023 
 

  



Enabling trust in a connected future        

 

6 
 

2. Abbreviations 
 

3GPP 3rd Generation Partnership Project (3GPP) 

5G SA 5G Standalone 
APDU Application Protocol Data Unit 
API Application Programming Interface 
APN Access Point Name 
CAP Converted Applet 
CAT-TP Card Application Toolkit – Transport Protocol 
CoD Transient Clear on Deselect 
eSIM Embedded SIM (Subscriber Identity Module) 
EEP Electrically erasable programmable 
ETSI European Telecommunications Standards Institute 
eUICC Embedded UICC (Universal Integrated Circuit Card) 
FCP File control parameters 
GSMA Global System for Mobile Communications Association 
ICC Integrated Circuit Card 
I/O Input/output 
IOT Internet of things 
iUICC Integrated (UICC) Universal Integrated Circuit Card 
JCVM Java Card Virtual Machine 
LTE Long Term Evolution 
M2M Machine to machine 
MNO Mobile Network Operator 
MVNO Mobile Virtual Network Operator 
NAA Network Access Application 
NVM Non Volatile Memory 
OEM Original Equipment Manufacturer 
OS Operating System 
OTA Over the air 
PIN Personal identification number 
QR Quick-response 
RAM Random access memory 
RE Runtime Environment 
RMI Remote Method Invocation 
RSP Remote SIM Provisioning 
SCP Secure Channel Protocol 
SDOs Standardization organizations 
SIM Subscriber Identity Module 
SM-DP+ Subscription management – data preparation (as in 

SGP.22) 
SMS Short Message Service 
TLV Tag-length-value 
UE User equipment 
UI User Interface 
UICC Universal Integrated Circuit Card 
UST USIM Service Table 

 

  



Enabling trust in a connected future        

 

7 
 

3. Definitions 
 

eSIM eSIM is the generic term applied to devices and eUICCs 

that support Remote SIM Provisioning as defined by 

GSMA. 

eUICC A UICC which enables the remote and/or local 

management of profiles in a secure way that meet GSMA 

requirements for Remote SIM Provisioning and are certified 

in accordance to the GSMA compliance programme. The 

term originates from “embedded UICC”. 

GlobalPlatform API The GlobalPlatform API provides services to applications 

(e.g. cardholder verification, personalisation, or security 

services). 

Java Card Technology that allows Java-based applications to be run 

securely on smart cards and more generally on similar 

secure small memory. 

Remote SIM Provisioning (RSP) Specification developed by GSMA that allows consumers 

to remotely manage the Subscriber Identity Module (SIM) 

embedded in a device. 

Subscriber Identity Module (SIM) A generic term for the application(s) residing on the UICC 

that identifies a subscriber and allows them to securely 

access a mobile network (e.g. 4G or 5G). SIM is sometimes 

used interchangeably with the term UICC or SIM card.  

Universal Integrated Circuit Card The platform, specified by ETSI, which can be used to run 

multiple security applications. These applications include 

the SIM for 2G networks, USIM for 3G, 4G and 5G 

networks, CSIM for CDMA, and ISIM (not to be confused 

with integrated SIM) for IP multimedia services. UICC is 

neither an abbreviation nor an acronym. 

 

  



Enabling trust in a connected future        

 

8 
 

4. Introduction: The Java Card Applet Stepping Stones 
 

For several decades, the UICC has been leveraged to deliver advanced and innovative value-

added services – which have been further enriched as the capabilities of UICC technology has 

evolved.  

The emergence of eUICC technology is having a transformative impact, but also presents new 

interoperability challenges for stakeholders as, on a specific eUICC, several profiles containing 

applets by third parties are downloaded with minimal or no integration activity.  

To ensure seamless integration and simplify deployments across the highly complex telecom 

ecosystem, Trusted Connectivity Alliance (TCA) – as a leading global industry association – has 

a proven record identifying and promoting the need for strong interoperability. Among myriad 

other initiatives, the publication of its various ‘Stepping Stones’ documents have played an 

important role in guiding industry stakeholders.  

The publication of this latest Stepping Stones document marks a continuation of TCA’s decades-

long efforts to promote interoperability. It should also be noted that previous documents such as 

‘Trusted Connectivity Alliance: Interoperability Stepping Stones Release 7’ - developed in 

December 2009 - are still valid and can be used as reference. 

Overall, this document serves as an indispensable resource for Java Card applet developers, 

offering a holistic view of the technology's nuances, best practices, and security considerations 

to facilitate the creation of robust and interoperable solutions in the dynamic landscape of smart 

card development. 

This document delves into various aspects of Java Card technology, providing a thorough 

exploration of the Interoperability Stepping Stones and the evolving applet ecosystem. The 

overview of Java Card versions, including Java Card 3.0.5 and Java Card 3.1.0, is accompanied 

by a summary of essential updates from ETSI and 3GPP, offering developers valuable insights 

into the ever-changing landscape. The guidelines for Java Card applet development, 

encompassing NVM, fields, local variables, and more, serve as a roadmap for best practices. 

Furthermore, the document extends its focus to the critical realm of security, offering 

recommendations applicable to all applets and additional measures for sensitive ones. The 

inclusion of the TCA Loader, TCA eSIM Interoperability Service, and insights into interoperability 

events, such as the Interoperability Test Fest, underscores the importance of seamless 

integration. 



Enabling trust in a connected future        

 

9 
 

For developers seeking practical guidance, the document concludes with a comprehensive 

checklist, ensuring that applet developers are well-equipped to navigate the intricacies of 

interoperability.  

4.1. Target Audience  
The target audience are Java Card applet developers interested in developing interoperable 

applets targeting Secure Elements and SIM/USIM applications from Trusted Connectivity Alliance 

members and, in particular, for devices that are used in Remote SIM Provisioning (RSP) 

environments. The document covers common pitfalls and ways to avoid them, improving the 

overall quality of applets.   

4.2. Problem Statement  
The focus of the current version of the document is to provide guidelines for Java Card applet 

developers to help prevent issues that could result in incorrect operation of and/or permanent 

damage to the SIM/eSIM/eUICC/iUICC/integrated eUICC. The guidelines become even more 

important in the context of the eUICC and iUICC considering that, in case of permanent damage, 

the eUICCs cannot be replaced like the traditional removable UICCs. (For more information on 

the eUICC/iUICC technology and ecosystem, you can refer to TCA document ‘Integrated SIM: A 

Practical Approach’). 

4.3. Notes for Readers  
UICCs (independent of their form-factor) with capability of managing the subscriptions via Remote 

SIM Provisioning (RSP), referred to as eUICCs in the GSMA specification, are commonly referred 

to as eSIMs in the commercial world. 

The GSMA specifies the Subscription Management solutions for three different markets - M2M, 

IoT and Consumer, with each having a dedicated technical specification. While the guidelines that 

apply to the applets that are developed for all three market variants broadly remain the same, the 

applets would differ in the functionality and services catering to the particular eUICC variant. 

  



Enabling trust in a connected future        

 

10 
 

 

5. Understanding the Java Card Applet Ecosystem 
 

This section is intended to provide Java Card applet developers with an overview of key Java 

Card versions, including Java Card 3.0.5 and Java Card 3.1.0. This is accompanied by a 

summary of essential recent updates from GSMA and 3GPP to help developers understand and 

navigate the evolving ecosystem.  

5.1. Java Card Technology (JC 3.0.5, JC 3.1.0,…) 
Java Card technology, tailored for smart cards and memory-constrained devices, has undergone 

significant evolution.  

Beginning with Java Card 2.2.1 (2003) and progressing through versions like Java Card 3.0 

(Classic Edition, 2008) and Java Card 3.1 (2018), the technology has embraced improvements 

such as Java Card RMI, extended APDUs, new APIs for Certificate Management and support for 

new cryptographic algorithms.  

The latest version, Java Card 3.2, introduced in 2023, expands the horizon with support for 

advanced security algorithms, improved cryptographic operation performance, and compatibility 

with diverse card form factors. 

Developers should understand the capabilities of the various Java Card versions and, to enhance 

interoperability with in-field eUICCs, choose the minimal Java Card version required by the 

developed service. For example, if an applet is compiled using the Java Card 3.1.0 APIs, it will 

not be compatible with a Java Card 3.0.5 eUICC. However, a Java Card 3.0.5 applet can be 

downloaded on both 3.0.5 and 3.1.0 eUICCs. 

This applies in general to all the packages that are imported by the application. For example, An 

application importing Release 6 of the ETSI TS 102 241 API can be loaded on Release 15 cards, 

while an application importing Release 15 of the ETSI TS 102 241 API cannot be loaded on 

Release 6 cards. This means that to enhance interoperability, application developers should 

always choose the lowest version of the API required by the application services. 

It should be noted as a reference, GSMA SGP.22 consumer eUICCs v2.x requires at least Java 

Card 3.0.4, while the ETSI Release18 APIs require at least Java Card 3.1.0. 

 



Enabling trust in a connected future        

 

11 
 

5.2. GSMA and 3GPP: Understanding Major Updates for Java Card 
Developers 

 

GSMA has driven the standardisation of the eUICC in all variants; in particular, in the SGP.22 v2.4 

several evolutions relevant to applet developers have been introduced. 

Some of the key features of SGP.22 v2.4: 

• Remote provisioning: eSIMs can now be provisioned remotely, without the need for physical 

access to the device. 

• Remote management: eSIMs can now be managed remotely, including updating the 

firmware and profiles. 

• Support for new applications: SGP.22 v2.4 supports a wider range of applications for 

eSIMs, including 5G, IoT, and M2M. 

In 3GPP, the Rel-17 has furtherly enhanced The 5G-SA architecture, with a significant evolution 

versus 4G/LTE. It is based on a set of independent functions being deployed in a cloud 

infrastructure. The full 5G architecture promises to allow MNOs and other mobile service 

providers to build systems that can offer innovative services that can generate enormous benefits.  

5G-SA, with its complex micro-services topology in a cloud environment, is a combination of 

information technology and communication technologies. It has brought change to the network 

architecture, which enables the network to flexibly support a variety of application scenarios. 

Those changes raise different security requirements and distinct security configurations for the 

network, especially for network deployment and operations.  

Due to compatibility issues and need to offer a continuity of service to users, a 4G (or even 3G) 

SIM can be used in a 5G network. However, only a 5G SIM will unlock the full potential of the 5G-

SA with the adequate level of security to face the aforementioned challenges.  

To support comprehension of the added value of a 5G SIM, TCA has developed a set of 

recommendations that includes the recent Release 17 support (‘Recommended 5G SIM 

Technical Definition: Enhanced for 3GPP Release 17’). 

  



Enabling trust in a connected future        

 

12 
 

6. Java Card Applet Developer Best Practices 
 

The following section identifies and details a series of best-practices for Java Card applet 

developers to maximise interoperability.  

6.1. Non-Volatile Memory (NVM) Update 

Typically, the NVM technology presents a technological limit in the number of times that the 

memory value can be updated. Typical products may have 200,000 or 500,000 memory cycles, 

meaning that the same memory area can be updated only 200,000 or 500,000 times without 

losing its reliability. 

To avoid compromising the reliability of the devices, applets are supposed to minimise updates 

to NVM. This is particularly true if the applet is triggered by relatively frequent events: 

 

- The STATUS command as an example can be received twice a minute, leading to over 1 

million triggers in a year. If the applet wrote the same NVM area once per 

EVENT_STATUS_COMMAND, the UICC reliability could be compromised in less than one 

year. 

- Similarly, the EVENT_EVENT_DOWNLOAD_LOCATION_STATUS may also be very frequent, 

especially when the network signal is unstable or the device is on the border between two 

different cells. 

- Also, the EVENT_EXTERNAL_FILE_UPDATE can be very frequent if the file is regularly 

updated (i.e. the files that have the “Update activity” information set to “High” in the 

specification where the file is defined, like ETSI TS 102 221 or 3GPP 31.102, such as the EF 

LOCI [Location Information]). 

 

During the above events, as well as other events that may be very frequent, applets should avoid 

performing writings in NVM if not necessary, including: 

 
- File update. 

- Java Card fields update. 

- Java Card persistent array content update. 

- Invoking an object constructor. 

- Invoking system APIs that may result in NVM update, including the registration or de-

registration to toolkit events. 



Enabling trust in a connected future        

 

13 
 

- Invocation of the Garbage Collection (JCSystem.requestObjectDeletion); even if 

no object is deleted it may result in NVM updates.  

 

For cryptographic operations on Java Card 3.0.5 and onward versions, the usage of OneShot 

class (e.g. Cipher.OneShot, MessageDigest.OneShot, RandomData.OneShot) is 

recommended as it will reduce NVM updates.  

//For example (Good practice):  

. 

Cipher.OneShot enc = null; 

 try { 

     enc = Cipher.OneShot.open(Cipher.CIPHER_RSA, Cipher.PAD_PKCS1); 

     enc.init(someRSAKey, Cipher.MODE_ENCRYPT); 

     enc.doFinal(someInData, (short) 0, (short) someInData.length, 
encData, (short) 0); 

 } catch (CryptoException ce) { 

     // Handle exception 

 } finally { 

     if (enc != null) { 

         enc.close(); 

         enc = null; 

           } 

        } 

 

A specific consideration is related to the javacard.security.KeyPair object. In fact, the 

KeyPair has two different constructors: 

- The javacard.security.KeyPair(byte algorithm, short keyLength) 

constructor, and; 

- The javacard.security.KeyPair(PublicKey publicKey, PrivateKey 

privateKey) constructor.  

When javacard.security.KeyPair(byte algorithm, short keyLength) 

method is used, the API will instantiate a KeyPair object and a pair of PrivateKey and 

PublicKey objects. It is not possible in this case to specify if the Key objects use transient or 

persistent memory. 

https://docs.oracle.com/en/java/javacard/3.2/jcapi/api_classic/javacard/framework/JCSystem.html#requestObjectDeletion()


Enabling trust in a connected future        

 

14 
 

In some cases, like ephemeral key pairs generation, key usage is limited to the session. This  

guarantees that the Key objects use volatile memory usage to reduce NVM updates. When the 

applicative use case requires generation of ephemeral key pairs, the following procedure should 

be followed: 

- For each key type and size to be supported, instantiate only once a PrivateKey and a 

PublicKey object using the related KeyBuilder.buildKey() methods specifying the 

usage of transient memory. 

- For each key type and size to be supported, instantiate one KeyPair using 

javacard.security.KeyPair(PublicKey publicKey, PrivateKey 

privateKey) constructor and passing the PrivateKey and PublicKey objects  

instantiated at previous step. 

- Invoke the KeyPair.genKeyPair() method each time a generation of new ephemeral 

keys is needed. 

 
Specific operating systems may have dedicated optimisations to limit the issue, like a wear 

levelling mechanism (that modifies the physical location to avoid always writing to the same 

page). But as they are not guaranteed to always be supported by all TCA member eUICC 

products, applet developers should not rely on such mechanisms to increase robustness. 

 
Initialised arrays declared as static 

Arrays containing constants, like menu strings or cryptographic constant arrays, should be 

declared static. This means the arrays are not initialised at installation, saving code space. 

//For example (Good practice):  

. 

. 

public final class testApplet extends Applet implements ToolkitInterface 
{ 

      static final byte[] menuEntry = { (byte) 'm', (byte) 'e', (byte) 
'n', (byte) 'u', (byte) 'I', (byte) 't', (byte) 'e', (byte) 'm'}; 

      static final short[] filePath = {(short)0x3F00, (short)0xDF00, 
(short)0xEF00}; 

   . 

   . 

} 

 



Enabling trust in a connected future        

 

15 
 

Using transient working buffers as scratchpad  

Working and scratch buffers should be declared as transient arrays, as its content is supposed 

to change frequently. If an applet developer needs to manipulate and change data at different 

offsets within an NVM buffer, they can create a copy of the NVM buffer in a transient buffer. The 

data manipulation can then be performed on the transient buffer. Finally, the content can be 

transferred back to the NVM buffer with a single update API invocation, minimising the number 

of updates of the NVM buffer. 

//For example (Bad practice) 

. 

. 

public final class testApplet extends Applet implements 
ToolkitInterface { 

   static final short SIZE_NVM_BUFFER = (short)300; 

   static final short NVM_BUFFER_OFFSET_A = (short)0; 

   static final short NVM_BUFFER_OFFSET_B = (short)10; 

   static final byte NVM_BUFFER_DATA_A = (byte)0x81; 

   static final byte NVM_BUFFER_DATA_B = (byte)0x82; 

 

   static byte[] nVM_Buffer = new byte[SIZE_NVM_BUFFER]; 

   . 

   . 

   public static void install () { 

   new testApplet(); 

   . 

   . 

   //Instead of initializing the NVM array directly: 

   nVM_Buffer[NVM_BUFFER_OFFSET_A] = NVM_BUFFER_DATA_A; 

   nVM_Buffer[NVM_BUFFER_OFFSET_B] = NVM_BUFFER_DATA_B; 

   } 

} 

 

//For example (Good practice) 

. 

. 



Enabling trust in a connected future        

 

16 
 

public final class testApplet extends Applet implements 
ToolkitInterface { 

   static final short SIZE_NVM_BUFFER = (short)300; 

   static final short SIZE_TRANSIENT_BUFFER = (short)30; 

   static final short NVM_BUFFER_OFFSET_A = (short)0; 

   static final short NVM_BUFFER_OFFSET_B = (short)10; 

   static final byte NVM_BUFFER_DATA_A = (byte)0x81; 

   static final byte NVM_BUFFER_DATA_B = (byte)0x82; 

 

   static byte[] nVM_Buffer = new byte[SIZE_NVM_BUFFER]; 

   static byte[] transientBuffer; 

   . 

   . 

   public static void install () { 

      transientBuffer = JCSystem.makeTransientByteArray( 
SIZE_TRANSIENT_BUFFER, JCSystem.CLEAR_ON_RESET); 

      new testApplet(); 

      . 

      . 

      //A transient array having sufficient size can be initialized 
first 

      //and then the nVM_Buffer can be written in one go 

      transientBuffer[NVM_BUFFER_OFFSET_A] = NVM_BUFFER_DATA_A; 

      transientBuffer[NVM_BUFFER_OFFSET_B] = NVM_BUFFER_DATA_B; 

      Util.arrayCopy(transientBuffer, (short)0, nVM_Buffer, (short)0, 
SIZE_TRANSIENT_BUFFER); 

   } 

   . 

   . 

} 

 

  



Enabling trust in a connected future        

 

17 
 

Using a single contiguous array to hold multiple arrays of the same type 

Instead of creating several arrays of the same data type, it’s better to create one for each data 

type and define constants as offsets to access the desired zone within the array. Since arrays 

are objects, their creation is slow and consumes more memory as the virtual machine adds 

some more bytes as header. 

//For example (Bad practice) 

. 

. 

public final class testApplet extends Applet implements ToolkitInterface { 

   private static ToolkitRegistry tlkReg; 

   private static byte menuID1; 

   private static byte menuID2; 

   private static byte menuID3; 

   . 

   //Instead of creating several byte arrays like below 

   static final byte[] menuEntry1 = {(byte) 'm', (byte) 'e', (byte) 'n', 
(byte) 'u', (byte) 'I', (byte) 't', (byte) 'e', (byte) 'm', (byte) '1'}; 

   static final byte[] menuEntry2 = {(byte) 'm', (byte) 'e', (byte) 'n', 
(byte) 'u', (byte) 'I', (byte) 't', (byte) 'e', (byte) 'm', (byte) '2'}; 

   static final byte[] menuEntry3 = {(byte) 'm', (byte) 'e', (byte) 'n', 
(byte) 'u', (byte) 'I', (byte) 't', (byte) 'e', (byte) 'm', (byte) '3'}; 

   . 

   . 

   public static void install () { 

      new testApplet.register(); 

      tlkReg = ToolkitRegistrySystem.getEntry(); 

      menuID1 = tlkReg.initMenuEntry(menuEntry1, (short)0, (short) 
menuEntry1.length, (byte) 0, false, (byte) 0, (byte) 0); 

      menuID2 = tlkReg.initMenuEntry(menuEntry2, (short)0, (short) 
menuEntry2.length, (byte) 0, false, (byte) 0, (byte) 0); 

      menuID3 = tlkReg.initMenuEntry(menuEntry3, (short)0, (short) 
menuEntry3.length, (byte) 0, false, (byte) 0, (byte) 0); 

      . 

      . 

   } 

   . 



Enabling trust in a connected future        

 

18 
 

   . 

} 

 

//For example (Good practice) 

public final class testApplet extends Applet implements ToolkitInterface { 

   private static ToolkitRegistry tlkReg; 

 

   //Create a single array that can hold all the data of the same type 

   private static byte[] menuID = new byte[3]; 

   private static final byte[] constantByteData = { 

      (byte) 'm', (byte) 'e', (byte) 'n', (byte) 'u', (byte) 'I', (byte) 
't', (byte) 'e', (byte) 'm', (byte) '1', 

      (byte) 'm', (byte) 'e', (byte) 'n', (byte) 'u', (byte) 'I', (byte) 
't', (byte) 'e', (byte) 'm', (byte) '2', 

      (byte) 'm', (byte) 'e', (byte) 'n', (byte) 'u', (byte) 'I', (byte) 
't', (byte) 'e', (byte) 'm', (byte) '3'}; 

   private static final short OFFSET_MENU_ITEM1 = 0; 

   private static final short OFFSET_MENU_ITEM2 = 9; 

   private static final short OFFSET_MENU_ITEM3 = 18; 

   . 

   . 

   public static void install () { 

      new testApplet.register(); 

      tlkReg = ToolkitRegistrySystem.getEntry(); 

      menuID[0] = tlkReg.initMenuEntry(constantByteData, OFFSET_MENU_ITEM1, 
(short) 9, (byte) 0, false, (byte) 0, (byte) 0); 

      menuID[1] = tlkReg.initMenuEntry(constantByteData, OFFSET_MENU_ITEM2, 
(short) 9, (byte) 0, false, (byte) 0, (byte) 0); 

      menuID[2] = tlkReg.initMenuEntry(constantByteData, OFFSET_MENU_ITEM3, 
(short) 9, (byte) 0, false, (byte) 0, (byte) 0); 

      . 

      . 

   } 

   . 

   . 

} 

 



Enabling trust in a connected future        

 

19 
 

6.2. Fields and Local Variables 
As field variables are stored in NVM, frequent updates should be avoided to reduce stress on the 

NVM. If a field variable is subject to change due to some calculations, it is advised to perform the 

calculation in a local variable and assign the result to the field variable. 

If a field member (primitive or references to objects/arrays) is accessed several times in the same 

method, copy the content of the field in a local variable and use the local variable (reducing the 

access to the field member).   

Due to the size of the stack, methods should avoid using too many local variables and parameters. 

Whenever possible it is suggested to reuse local variables and limit the scope of the local variables 

to be only be accessible within a block. 

6.3. Applet Deletion 
If an object owned by an applet instance is used by another applet instance, the object must be 

dereferenced before deleting the owning applet instance. The uninstall method can be used to 

remove all dependencies before applet deletion.  

Static variables and methods belong to the class, not to the instance, so they are not affected by 

the firewall and are accessible by other applet instances. However, caution must be exercised 

when using static methods and fields. If the CAP file containing the static methods or fields is to 

be deleted, the CAP file using the method should be removed first. CAP files, whose static 

methods or fields are used by another CAP file, will not be deleted unless those CAP files are 

deleted first. 

6.4. Object Constructors 
As much as possible, object (for keys, PIN, signature etc.) should be created in the applet’s 

constructor. When created during runtime, it is not guaranteed that there will be enough memory. 

Byte array initialisation should also be done in the applet constructor.  

Below is a non-exhaustive list of the methods which create new object when invoked: 

• getInstance 

• makeTransientByteArray 

• makeTransientBooleanArray 

• makeTransientObjectArray 

• makeTransientShortArray 

• buildKey 



Enabling trust in a connected future        

 

20 
 

• UICCSystem.getTheUICCView 

• buildTLVHandler 

It is recommended to use Java Card RE owned exception objects instead of creating new objects 

for these exceptions (e.g. ISOException). Developers can use 

javacard.framework.UserException for custom exceptions. 

6.5. Stack Management 
The more a method contains local variables and parameters, the more stack it will consume. As 

the RAM size is limited, the developer should refrain from using many local variable and 

parameters in a method. 

Deeply nested method calls (method calling another method which in turn call another method, 

etc.) and use of recursion should be avoided.  

// Wrong practice 

private void method(){ 

 byte tmpByte = methodA();  

 .. 

 .. 

} 

 

 

private byte methodA(){ 

    byte l_byte 

 ... 

 ...  

 l_byte = methodB(l_byte); 

 return l_byte; 

} 

 

 

private byte methodB(byte param){ 

 ... 

 ...  

 return param; 

} 



Enabling trust in a connected future        

 

21 
 

 

 

// Good practice 

private void method (){ 

 byte tmpByte = methodA(); 

 tmpByte = methodB(tmpByte) 

} 

 

 

private byte methodA (){ 

    byte l_byte 

 ... 

 ...   

 return l_byte; 

} 

 

 

private byte methodB (byte param){ 

 ... 

 ...  

 return param; 

} 

 

 

6.6. Handlers (Re-entrance) 
When retrieving the ProactiveHandler, the getTheHandler should be surrounded by a try-

catch block. In case the handler is not available, a flag can be set to indicate this state. 

Whether the proactive command is needed, the flag can be checked for availability. The event 

EVENT_PROACTIVE_HANDLER_AVAILABLE can be registered for re-entrance if needed. As 

event registration results in a NVM update, however, it should be avoided when not required. 

If the event EVENT_PROACTIVE_HANDLER_AVAILABLE is expected to be utilised frequently, 

the event EVENT_STATUS_COMMAND can serve as an alternative in order to reduce NVM 

wearing. 



Enabling trust in a connected future        

 

22 
 

//For example (Good practice) 

public final class testApplet extends Applet implements  

ToolkitInterface, ToolkitConstants { 

   private static ToolkitRegistry tlkReg; 

          

   private static final short TRANS_OFF_TASK = 0; 

   private static final short TRANS_LEN_TASK = 1; 

    

   private static final short TRANS_SIZE = TRANS_OFF_TASK  

  + TRANS_LEN_TASK; 

   private static final byte TASK_SEND_SMS = 1; 

   private byte[] transAry; 

   . 

   . 

   public static void install (byte bArray[], short bOffset, byte 
bLength) { 

      new testApplet.register(bArray,    

   (short)(bOffset + 1),  

   (byte)bArray[bOffset]); 

      tlkReg = ToolkitRegistrySystem.getEntry(); 

      tlkReg.setEvent(EVENT_EVENT_DOWNLOAD_LOCATION_STATUS); 

    

   transAry = JCSystem.makeTransientByteArray(TRANS_SIZE,  

   JCSystem.CLEAR_ON_RESET); 

   } 

   . 

   . 

   public void processToolkit(short sEvent) { 

    // variable to check whenever the proactive command handler is 
needed 

    boolean isHandlerAvailable = false; 

      try{ 

            ProactiveHandlerSystem.getTheHandler(); 

   isHandlerAvailable = true; 

    



Enabling trust in a connected future        

 

23 
 

         }catch(ToolkitException tlkEx){ 

            // handler not available 

         } 

    

      switch (sEvent) { 

      case EVENT_EVENT_DOWNLOAD_LOCATION_STATUS: 

    

    doSomeThingWithEnvelop(); 

         if (isHandlerAvailable){ 

    sendSMS(); 

    }else{ 

  tlkReg.setEvent(EVENT_PROACTIVE_HANDLER_AVAILABLE); 

  transAry[TRANS_OFF_TASK] = TASK_SEND_SMS; 

    } 

      break; 

 

      case EVENT_PROACTIVE_HANDLER_AVAILABLE: 

         switch(transAry[TRANS_OFF_TASK]){ 

    case TASK_SEND_SMS: 

    sendSMS(); 

    break; 

     

   } 

   // clear flag 

   transAry[TRANS_OFF_TASK] = 0; 

      break; 

 

      default: 

      break; 

      } 

   } 

    

   private void sendSMS(){ 

    ProactiveHandler pro =  



Enabling trust in a connected future        

 

24 
 

    ProactiveHandlerSystem.getTheHandler(); 

    ... 

    ... 

   } 

    

} 

 

6.7. Execution Time  
Applet developers should limit the execution time of specific commands to specified time limits to 

avoid blocking the device in case it requires UICC services. Typically, the execution time of a 

single command should be below 30 seconds. As the execution time depends on the target 

platform (the JCVM on some chips can be faster than others), there can be significant differences 

between devices provided by different vendors. Specific operations in particular (like asymmetric 

cryptography, NVM buffer initialisations, data manipulation in arrays, etc.) may take a significant 

amount of time. It is then advised to include some margins within the execution time to increase 

confidence that the execution time is always under 30 seconds. In case a command is suspected 

to require more than 30 seconds, it is advised to introduce MORE TIME proactive command to 

interrupt the execution and give back control to the mobile phone and continue the execution at 

the corresponding TERMINAL RESPONSE command. 

 
//For example (Bad practice) 

public final class testApplet extends Applet implements  

ToolkitInterface, ToolkitConstants { 

   static ToolkitRegistry tlkReg;  

   static final short SIZE_NVM_BUFFER = (short) 30000; 

   static boolean initializeLargeNVMBuffer = true; 

   static byte[] nVM_Buffer = new byte[SIZE_NVM_BUFFER]; 

   . 

   . 

   public static void install () { 

      new testApplet().register(); 

      tlkReg = ToolkitRegistrySystem.getEntry(); 

      tlkReg.setEvent(EVENT_PROFILE_DOWNLOAD); 

   } 



Enabling trust in a connected future        

 

25 
 

   . 

   . 

   public void processToolkit(short sEvent) { 

      switch(sEvent) { 

      case EVENT_PROFILE_DOWNLOAD: 

         if(initializeLargeNVMBuffer) { 

            Util.arrayFill(nVM_Buffer, (short) 0, SIZE_NVM_BUFFER, (byte) 
0xFF); 

            initializeLargeNVMBuffer = false; 

         } 

      } 

   } 

} 
 

//For example (Good practice) 

public final class testApplet extends Applet implements ToolkitInterface, 
ToolkitConstants { 

   static ToolkitRegistry tlkReg; 

   static final short SIZE_NVM_BUFFER = (short) 30000; 

   static final short SIZE_NVM_BUFFER_BLOCK = (short) 10000; 

   static final short SIZE_TRANSIENT_BUFFER = 2;     

   static final short OFFSET_TBUFF_NBUFF_BLOCK = 0; 

   static final short OFFSET_TBUFF_HDLR_AVL = 1; 

   static final byte MASK_INIT_NBUFF = 0x01; 

   static final byte NVM_BUFFER_BLOCKS = (byte) ( SIZE_NVM_BUFFER / 
SIZE_NVM_BUFFER_BLOCK); 

 

   static boolean initializeLargeNVMBuffer = true; 

 

   static byte[] nVM_Buffer = new byte[SIZE_NVM_BUFFER]; 

   static byte[] transientBuffer; 

   . 

   . 

   public static void install () { 

      transientBuffer = JCSystem.makeTransientByteArray((short) 
SIZE_TRANSIENT_BUFFER, JCSystem.CLEAR_ON_RESET); 



Enabling trust in a connected future        

 

26 
 

      new testApplet().register(); 

      tlkReg = ToolkitRegistrySystem.getEntry(); 

      tlkReg.setEvent(EVENT_PROFILE_DOWNLOAD); 

   } 

   . 

   . 

   public void processToolkit(short sEvent) { 

      switch(sEvent) { 

         case EVENT_PROFILE_DOWNLOAD: 

            initializeLargeNVMBuffer(); 

         break; 

 

         case EVENT_PROACTIVE_HANDLER_AVAILABLE: 

       if((transientBuffer[OFFSET_TBUFF_HDLR_AVL] & MASK_INIT_NBUFF) 
== MASK_INIT_NBUFF) { 

               transientBuffer[OFFSET_TBUFF_HDLR_AVL] &= 
~MASK_INIT_NBUFF; 

               initializeLargeNVMBuffer(); 

            } 

         break; 

         . 

         . 

    default: 

         break; 

      } 

   } 

    

   private boolean sendMoreTime(byte mask) { 

      try { 

         ProactiveHandler proHdlr = 
ProactiveHandlerSystem.getTheHandler(); 

         proHdlr.initMoreTime(); 

         proHdlr.send(); 

         return true; 

      }catch (ToolkitException e) { 



Enabling trust in a connected future        

 

27 
 

         transientBuffer[OFFSET_TBUFF_HDLR_AVL] |= mask; 

         tlkReg.setEvent(EVENT_PROACTIVE_HANDLER_AVAILABLE); 

      } 

      return false; 

   } 

 

   private void initializeLargeNVMBuffer() 

   { 

      byte nVM_Block = transientBuffer[OFFSET_TBUFF_NBUFF_BLOCK]; 

 

      if(!initializeLargeNVMBuffer) 

         return; 

 

      while(nVM_Block < NVM_BUFFER_BLOCKS) { 

         if(!sendMoreTime(MASK_INIT_NBUFF)) 

            return; 

         Util.arrayFill(nVM_Buffer, (short) (nVM_Block * 
SIZE_NVM_BUFFER_BLOCK), SIZE_NVM_BUFFER_BLOCK, (byte) 0xFF); 

         transientBuffer[OFFSET_TBUFF_NBUFF_BLOCK]++; 

         nVM_Block++; 

      } 

      initializeLargeNVMBuffer = false; 

   } 

} 

 
 

6.8. RAM Management 
Applets should limit the usage of RAM to the minimum, as the available resources in the targeted 

eUICC where the profile containing the applet will be loaded is not known. 

An efficient way to save RAM is reusing the same scratch buffers or using system allocated buffers 

when available (like the APDU buffer or the toolkit volatile byte array). In particular, the APDU 

buffer is only available when the access is performed by the currently selected applet, while the 

toolkit volatile byte array is only available when the buffer reference is retrieved by the currently 

selected applet or by the applet currently triggered by a toolkit event. 



Enabling trust in a connected future        

 

28 
 

6.9. Object Creation within Transactions 
Applet developers should be aware of the following requirement from the section 7.6.3 Cleanup 

Responsibilities of the Java Card RE specification [Java Card 3.0.5] – 

“Programmatic abortion after creating objects within the transaction can be deemed to be a 

programming error. When this occurs, the Java Card RE may, to ensure the security of the card 

and to avoid heap space loss, lock up the card session to force tear or reset processing.” 

This means that applet developers should avoid creating objects within transactions to avoid 

interoperability issues on platforms which force tear or reset processing. 

6.10. Shareable Interface and Multi-Selection  
It is recommended that the server applets providing access via shareable interfaces also 

implement the MultiSelectable interface. This is to avoid the SecurityException being 

thrown by Java Card RE when the shareable interface is requested/accessed while the context 

of the server applet instance is already active on another logical channel or I/O interface (as 

described in section 6.2 of Java Card RE specification and Java Card API specification).  

In addition, some standard APIs (e.g. ETSI 102 267 uicc.connection , ETSI 102 241 

uicc.suspendresume) define interfaces which are not extending 

javacard.framework.Shareable.  

To ensure interoperability TCA members recommend that applet developers implement the 

MultiSelectable interface in their applets if such APIs are used. 

Note: On specific products in the field from TCA members, an applet can also be triggered by 

such APIs when its context is already selected on a different channel even if it does not implement 

the MultiSelectable interface. For such applets already in the field, it is recommended to add 

MultiSelectable support whenever an applet modification is applied to increase 

interoperability.   

6.11. CLEAR_ON_DESELECT Memory Access 
Applets shall avoid use of CLEAR_ON_DESELECT memory within the shareable interface APIs, 

wherever these APIs are not executing in the currently selected applet context. 

6.12. Exception Handling 
Applets should handle all exceptions arising out of a Java Card/GlobalPlatform/ETSI API 

invocation to be able to continue processing depending on the business logic (e.g. 



Enabling trust in a connected future        

 

29 
 

ProactiveHandler availability should be ensured before invoking the related APIs or 

properly handle the related HANDLER_NOT_AVAILABLE exception). 

6.13. Transactions 
The number of bytes of conditional updates within a transaction depends on the capacity of the 

commit buffer. The following aspects of the transaction are implementation dependent and may 

vary across card manufacturers: 

- The capacity of the commit buffer.  

- The number of bytes consumed in the commit buffer for each conditional update. It may be 

more than the actual number of bytes written by the applet logic.  

A TransactionException is thrown if the conditional update results in exceeding the commit 

capacity. Care should be taken by the applet developers to:  

- Implement appropriate logic to handle transactions that may exceed this commit capacity 

and; 

- Abort the transaction as part of the exception handling logic (within the try-catch-finally block). 

Note: Nested transactions shall be avoided as per Java Card specification. 

6.14. CAP File Generation 
Only standard converters shall be used to generate applet CAP files. Presence of proprietary 

bytecodes within the CAP content will affect the interoperability and shall be avoided. 

6.15. Toolkit Install Parameters 
Applet developers should be aware of the restrictions specified in section 8.2.1.3.2 of [ETSI 102 

226] and section 21.2.3 of [Interoperability Stepping Stones R7] which state that:  

- Applets implementing the uicc.toolkit.ToolkitInterface interface or 

uicc.access.FileView interface shall be installed with the UICC System Specific 

Parameters (Tag ‘EA’) TLV object and those implementing the 

sim.toolkit.ToolkitInterface interface or using the sim.access.SIMView 

interface shall only be installed the SIM File Access and Toolkit Application Specific 

Parameters (Tag ‘CA’) TLV object. 

It is recommended that applet developers avoid use of the 

sim.toolkit.ToolkitInterface interface and the sim.access.SIMView interface 

since the eUICC is not mandated to support 2G SIM applications and instead switch to the usage 



Enabling trust in a connected future        

 

30 
 

of the uicc.toolkit.ToolkitInterface interface and the uicc.access.FileView 

interface. 

6.16. FileView API Usage 
As defined in section 12.8 of [Stepping Stones R7], applet developers shall ensure that applets 

using the FileView and SIMView APIs avoid using them interchangeably (e.g. using one API 

type for file selection and a different one for read/update, i.e. select using FileView API and 

read/update using SIMView API). 

6.17. Menu Entry Initialisation 
Toolkit applets shall ensure that the Menu Entries are initialised correctly (during the installation 

as described in ETSI 102 241 – initMenuEntry()method of ToolkitRegistry interface). 

Otherwise the menu entry state, returned as part of the response to a GET STATUS command 

for retrieving the Menu Parameters, may be undefined.  

6.18. Optimised API Usage 
Applets should make use of the right APIs to avoid unnecessary processing overhead in the 

eUICCs, which is not intended as per the business use-case. 

- Use file selection API which does not require the FCP generation when the intention is to just 

select the file and perform some operation on it (either read, write, activate, deactivate etc.).  

- Avoid passing NVM buffers as arguments when not intended. 

- Avoid invoking read/update APIs which do nothing (i.e. passed with length argument as 0).  

6.19. SUCI API 
Typically, SUCI calculation is performed by the USIM application (underlying OS) when the 

services n°124 and n°125 are indicated as available in the EFUST of the USIM NAA. But there may 

be use-cases where a mobile operator prefers that this operation be performed by a dedicated 

applet in the profile. 

Such an applet implements the SUCICalculator interface, and it should ensure/be aware of 

the following: 

• Even though the 3GPP specification [3GPP 31 102] allows the use of compressed elliptic 

curve public keys for the ProfileB scheme, the home network public key is provisioned in 

uncompressed format according to the TCA specification [TCA eUICC Profile Package: IFTS 

v3.3]. 



Enabling trust in a connected future        

 

31 
 

• Storing sensitive data in the buffer passed to the getSUCI() API is avoided since this buffer 

is a global array. 

• The length of the SUCI output is strictly within the limit specified by the “bLength” parameter 

of the getSUCI() API. 

• The ephemeral keys are regenerated for every call to the getSUCI() API. 

• The sensitive data is handled with appropriate security measures and is erased securely 

immediately after use (including exception scenarios). 

The profile creator shall ensure that the SUCI applet is granted the required access rights (in the 

Access Domain field of the install parameters) to access the files required for the SUCI calculation. 

 

  



Enabling trust in a connected future        

 

32 
 

7. Java Card Applet Development Guidelines for Secure 
Products 

 

In the 3GPP telecom architecture, the UICC – as a tamper-resistant secure hardware component 

– contains the most sensitive information on the user equipment (UE) side, namely the storage 

and processing of the subscription credentials. In order to maintain the highest level of security, 

it is important for the applets to be properly developed. This is even more important with the 

evolution to eUICC which are securely certified and where several profiles from different MNOs 

can be present at the same time.  

There are two types of applets: basic and sensitive. Basic applets don’t have assets to protect, 

nevertheless they have to comply to a minimum of security rules, especially for those installed on 

eUICC products (as defined in GSMA SGP.05 and SGP.25 and re-highlighted hereafter).  

Sensitive applets are applets which store or manipulate their own security assets. The following 

recommendations outline how the applet developer can sufficiently protect the applet assets.  

7.1. Security Recommendations for All Applets 
- Generic Rules:  

- Java Card applets must, at a minimum, follow the “GlobalPlatform Card Composition 

Model Security Guidelines for Basic Applications”. In particular, Java Card applets 

must successfully pass byte code verification using tools from Oracle. The tools used 

for byte code verifications shall be the latest versions available. 

- Java Card applet AID must be set as defined in ETSI 101220. In particular, applet 

developer shall use its own RID registered at ISO as defined in 7816-5. 

 

- Standard APIs:  

- The standard API should be used whenever possible, rather than rewriting methods. 

This holds for: 

- Java Card standard API 

- GlobalPlatform API 

- UICC API 

- USIM API 

 

 

 



Enabling trust in a connected future        

 

33 
 

7.2. Additional Security Recommendations for Sensitive Applets 
 
- Sensitive Data Management:  

- Sensitive data must be initialised at the beginning and cleared at the end of the 

session.  

- Sensitive data should be stored in transient data.  

- Always clear, with random data, (global) arrays used to store temporarily sensitive 

data. 

- Confidential data must not be stored in plain (e.g. may be ciphered or masked and 

stored).  

- Sensitive constant value: When a constant is used as reference value for a sensitive 

action, avoid choosing 0x00 or 0xFF for this constant. 

 

- Rollback Attacks  

- Protect your sensitive data against rollback attacks.  

 

- Flow Control:  

- In order to protect against multiple perturbations, countermeasures should be 

implemented to detect any change to the normal execution flow. If an inconsistent 

state is reached, an appropriate measure shall be applied according to applicable 

context (e.g. block the application, reset). 

 

- Sensitive Standard API:  

- When using a method of a standard API that needs absolutely to be executed, some 

consistency checking must be done to assume it has been correctly executed. Since 

Java Card 3.0.5, the SensitiveResult class can be used for asserting results of 

sensitive functions. 

 

- Random:  

- Avoid using deprecated random (ALG_PSEUDO_RANDOM and 

ALG_SECURE_RANDOM). Always use appropriate random depending on the usage. 

In particular, always use either ALG_KEYGENERATION or ALG_TRNG algorithms for 

sensitive use cases. 

 

 



Enabling trust in a connected future        

 

34 
 

- Programmatic Exceptions  

- Avoid the usage of programmatic exceptions to exit from a loop (e.g. do not parse 

table until catching an index out of bounds exception). 

 

- Java Card RMI:  

- The usage of the Java Card RMI mechanism is prohibited, because it lacks security-

related features (e.g. authentication and secure channels) 

  



Enabling trust in a connected future        

 

35 
 

8. Interoperability Testing Tools, Services and Events  
 

In the context of OS and applets, the ability of applets to run and function properly on different 

OS’s without requiring modification or adaptation for each distinct OS is referred to as 

interoperability. 

The eSIM ecosystem is enabled by an established infrastructure and global specifications, and all 

individual eSIM products and components are tested extensively prior to deployment. Due to 

variations in the interpretation and implementation of industry specifications, however, some 

interoperability issues only emerge when solutions are deployed live in the field and interact with 

other participants and components across the ecosystem. 

As the eSIM market grows in size and complexity, so too does the risk and impact of 

interoperability issues. A key challenge is the insufficient and incomplete testing of eSIM profiles, 

which leads to compatibility issues with specific devices on the market. The interoperability is even 

more challenging when the eSIM profile contains a Java Card applet. 

To help Java Card developers ensure seamless integrations, this section summarises key 

interoperability testing tool, services and events. This includes the TCA Loader, TCA eSIM 

Interoperability Service, and insights into interoperability events, such as the GlobalPlatform 

Interoperability Test Fest. 

8.1. TCA Loader  
The TCA Loader is a free to use tool to promote the interoperable deployment of SIM-based value-

added services. 

Version 3.0 of the TCA Loader provides applet developers with the ability to perform complete 

applet management on Java Card smartcards. This includes exploring the card contents and  

downloading, installing and deleting applications. The TCA Loader supports various security 

protocols such as SCP02, SCP03, SCP80, SCP81 and CAT-TP. 



Enabling trust in a connected future        

 

36 
 

  

Figure 1 - TCA Loader Main Page 

The TCA Loader also provides applet developers with a convenient user interface for applet 
compilation. The applet developer can choose the library classpath, export file path, then store 
the compilation configuration. Applet developers can then import the stored configuration later 
on. 

The TCA Loader can also be used to simulate the actual card behaviour in the field when 
performing application management via OTA or I/O using various supported security protocols. 
This enables applet developers to ensure applet management functionalities prior to card 
deployment. 

Downloading and Using the TCA Loader  

The TCA Loader can be downloaded here from the TCA website:  

- Direct Link  

- Summary Page  

The Full TCA Loader user manual is available after installation on Home > Getting Started > TCA 
Loader  Manual, or About > User Manual. 

  

https://trustedconnectivityalliance.org/wp-content/uploads/2023/09/TCALoaderSetup_final-with-signing-certificate.exe
https://trustedconnectivityalliance.org/technology_overview/esim/


Enabling trust in a connected future        

 

37 
 

 

8.2. TCA eSIM Interoperability Service 
To address eSIM profile interoperability issues, TCA has launched the TCA eSIM Interoperability 

Service – delivered by COMPRION . The service enables operators to test how their eSIM profiles, 

which may contain Java Card applet, interact with an extensive range of consumer eSIM devices. 

Service Description 

Test one (or more) customer-provided eSIM profile(s) against a customer-defined subset of the 

available portfolio of test devices.  

 

 

Figure 2 - Testing profile against test devices 

 

The testing is conducted between SM-DP+ services, using the GSMA live certificates, and 

devices with eSIMs also using GSMA live certificates. 

To commence testing, the customer ensures that the eSIM profile(s) can be downloaded from a 

customer-provided SM-DP+ service by scanning QR codes or entering activation codes. There 

are three possible ways to conduct the testing: 

- Self-testing: the testing is done by the customer on COMPRION’s site in Paderborn, 

Germany. 

 



Enabling trust in a connected future        

 

38 
 

- Self-testing remotely: the testing is done by the customer remotely. When technically 

possible, COMPRION enables the customer to remotely access the test devices. 

- Testing-by-COMPRION: the testing is done solely by COMPRION's expert  

Testing Process  

The tester selects one of the devices from the test device portfolio and initiates a profile download. 

Once the profile is successfully downloaded, a number of scenarios can be tested, including: 

- Initiating a call  

- Receiving a call 

- Sending an SMS 

- Receiving an SMS 

- Setting up internet connection 

Besides these basic checks the customer can request to add further checks (e.g. Access Point 

Name [APN] verification). 

If the profile contains a Java Card applet, the customer can also ask to test the behaviour of the 

applet. The customer needs to describe the behaviour which can be detected on the user 

interface and the potential interactions between the user and the applet. Based on this 

description, the behaviour of the applet can be tested. 

The behaviour of the device is then documented. In case any interoperability issues are detected, 

they are described in detail together with print screens and a video recording (if requested). The 

final documentation is then shared with the customer. 

In case the issue cannot be resolved by the customer, COMPRION offers root cause analysis as 

part of the Advanced eSIM Interoperability Testing Service. 

While the current scope of the TCA eSIM Interoperability Service is SGP.22, it can later be 

extended to SGP.32.  

Using the TCA eSIM Interoperability Service  

For more information about the service, please visit the TCA and COMPRION websites: 

• TCA eSIM Interoperability Service: Product Page  

• Five Step Guide to Using the TCA eSIM Interoperability Service 

• TCA eSIM Interoperability Service: Product Sheet 

https://trustedconnectivityalliance.org/esim-interoperability-service/
https://trustedconnectivityalliance.org/wp-content/uploads/2023/06/TCA-eSIM-Interop-Testing-Service-Infographic-FINAL-1.pdf?utm_source=iseepr&utm_medium=Mailer&utm_campaign=eSIMInteroperability&utm_content=eSIMInteroperabilityWebinar_29Jan_Infographic
https://trustedconnectivityalliance.org/wp-content/uploads/2023/06/TCA-eSIM-Interoperability-Service_One-Pager_FINAL-1.pdf?utm_source=iseepr&utm_medium=Mailer&utm_campaign=eSIMInteroperability&utm_content=eSIMInteroperabilityWebinar_29Jan_OnePager


Enabling trust in a connected future        

 

39 
 

• COMPRION – TCA eSIM Interoperability Service  

8.3. GlobalPlatform Test Fest 
‘Test Fest’ means an event conducted by GlobalPlatform for the purpose of enabling product 

vendors to engage in cross-testing of products, in order to demonstrate compliance with the 

relevant specifications from GlobalPlatform or other SDOs (like GSMA or TCA).  

The Test Fest environment also offers participants the ability to interact with one another for 

purposes of improving their individual products and providing feedback on the 

specifications/configurations themselves. 

The purpose of the Test Fest is to validate: 

- The specification compliance test suite: 

- Suite consisting of testing documentation, test scripts and/or other materials, based 

on a given test specification and related configuration, which has been released by 

GlobalPlatform or other SDOs for purposes of enabling authorized users to develop 

corresponding qualified test products. 

 

- The test tools implementing the GlobalPlatform test suite 

- Tools that integrate any portion of the test suite and are created, developed or 

produced for the purpose of performing tests on proposed compliant products. 

8.4. GSMA LITE Event 
The GSMA LITE Event is GSMA’s Live Interoperability Test Event, which has been held three 

times.  

The events are attended by companies ranging from MNOs/MVNOs to eUICC manufacturers, 

device OEMs and test companies, enabling various eSIM profiles to be tested against multiple 

eUICCs to achieve interoperability. 

 

  

https://www.comprion.com/products-solutions/products-solutions-a-z/tca-testing-service/


Enabling trust in a connected future        

 

40 
 

 

9. Interoperability Checklists 
 

 
Interoperability Checklist for Applet Developers 

 
Title Description Check 

1. No object creation within a 
transaction 

Ensure that objects are not created within a transaction □ 

2. CLEAR_ON_DESELECT 
memory access 

Ensure that CLEAR_ON_DESELECT memory is not 

accessed within a shareable interface APIs that could 

be executed in a context different from the context of 

the currently selected applet 

□ 

3. Exception handling 
Ensure that the exceptions thrown from APIs are caught 

and handled accordingly by use of try-catch block □ 

4. Transactions capacity 
Ensure that the number of conditional updates within a 

transaction is within the capacity of the commit buffer □ 

5. Transactions exception 
handling 

Ensure that the exceptions thrown within a transaction 

are caught and handled accordingly by use of try-catch 

block. 
□ 

6. Aborting transaction 

Ensure that the transaction is programmatically aborted 

in the exception handling logic in case of any error 

within a transaction 
□ 

7. CAP file generation 
Avoid proprietary byte codes in the CAP file. Ensure that 

standard converters are used to generate CAP files □ 

8. Usage of 
sim.toolkit.Toolkit
Interface interface and 
the 
sim.access.SIMView 
interface 

Avoid use of the sim.toolkit.ToolkitInterface 

interface and the sim.access.SIMView interface 

since the eUICC is not mandated to support 2G SIM 

applications and instead use the 

uicc.toolkit.ToolkitInterface interface and 

the uicc.access.FileView interface. 

□ 

9. FileView and SIMView 
APIs 

Ensure that the FileView and SIMView APIs are not 

used interchangeably within the same applet □ 

10. Menu Entry initialisation 
Ensure that the Menu Entries (if used within the applet) 

are initialised correctly during the installation. □ 



Enabling trust in a connected future        

 

41 
 

11. Optimised API usage 

Avoid unnecessary processing overhead by 

- Using the right APIs (wherever there are multiple 

APIs available to perform similar operation) 

- Avoiding the use of NVM buffer 

- Passing the right value for the arguments in the 

API 

□ 

12. SUCI API – Sensitive data 

Ensure that sensitive data is 

• not stored in the buffer passed to the 

getSUCI() API 

• handled with appropriate security measure and 

is erased securely immediately after use 

(including exception scenarios). 

□ 

13. SUCI API – Ephemeral keys 
Ensure that the ephemeral keys are regenerated for 

every call to the getSUCI() API □ 

14. SUCI API – SUCI output 

Ensure that the length of the SUCI output is strictly 

within the limit specified by the “bLength” parameter of 

the getSUCI() API 
□ 

15. NVM update 

Limit the updates to the same NVM (Flash or EEP) 

variables and arrays to less than 200,000 for the 

lifecycle of the applet 
□ 

16. NVM update on STATUS 
Avoid NVM update on EVENT_STATUS_COMMAND 

event 
□ 

17. NVM update on Location 
Status 

Avoid NVM update on 
EVENT_EVENT_DOWNLOAD_LOCATION_STATUS 

event 

□ 

18. NVM update on File Update 
Event 

Avoid NVM update on File Update Events for files with 

“High Update activity” 
□ 

19. Limit NVM update 
operations 

Limit all the operations that may cause NVM operations 

to the strict minimum, including: 

- File update 

- Java Card fields update 

- Java Card persistent array content update 

- Invoking an object constructor 

□ 



Enabling trust in a connected future        

 

42 
 

- Invoking System APIs that may result in NVM 

update, including: 

o the registration or de-registration to toolkit 

events 

o calling select methods of the 

uicc.access.FileView interface that is 

created as “NOT_A_TRANSIENT_OBJECT" 

 

20. Use OneShot class 
If the target device supports Java Card v3.0.5, use the 

OneShot class for cryptographic operations □ 

21. Execution time 

Verify that every toolkit execution is limited to 30 

seconds under any circumstances. If an execution takes 

more time interrupt it with the MORE TIME proactive 

command 

□ 

22. RAM usage 

Minimise RAM allocation to the minimum by reusing the 

same scratch buffers or using system allocated buffers 

when available (like the APDU buffer or the toolkit 

volatile byte array) 

□ 

23. Object creation 
Avoid invoking object constructor or factory method on 

non-installation or non-personalisation code □ 

24. Data integrity 

- Verify that the interdependent fields are updated in 

atomic transaction 

- Verify that the update operation of sensitive array or 

file is done in atomic way 

□ 

25. API usage Verify that the applet does not use proprietary library □ 

26. Converter usage 

- Verify that the applet is generated using standard 

Oracle converter 

- Verify that the applet has been verified by Oracle off-

card verifier 

□ 

27. Bytecode verification 
- Verify that the applet passes the latest bytecode 

verification process by Oracle □ 
28. Java Card RMI - Do not use Java Card RMI □ 
29. Sensitive data 

management 

Only applicable to sensitive applet 

- all rules on sensitive data implemented  □ 



Enabling trust in a connected future        

 

43 
 

30. Rollback protection 
Only applicable to sensitive applet 

- rollback protected □ 

31. Flow control 
Only applicable to sensitive applet 

- flow control implemented □ 

32. Sensitive standard API 
Only applicable to sensitive applet 

- Use SensitiveResult class when possible □ 

33. Random 
Only applicable to sensitive applet 

- Use ALG_KEYGENERATION or ALG_TRNG □ 

34. Shareable interface and 
multi-selection 

It is recommended that the server applets providing 

access via shareable interfaces also implement the 

MultiSelectable interface for use cases where the 

shareable interface is requested/accessed while the 

context of the server applet instance is already active on 

another logical channel or I/O interface 

□ 

 

 

 
Interoperability Checklist for Applet Installation and Configuration 

 
Title Description Check 

1. Toolkit installation 
parameter 

Ensure that the applets  

- implementing the  

uicc.toolkit.ToolkitInterface interface or 

using the uicc.access.FileView  interface are 

installed with the UICC System Specific Parameters (Tag 

‘EA’) TLV object 

- implementing the 

sim.toolkit.ToolkitInterface interface or using 

the sim.access.SIMView interface are installed with 

the SIM File Access and Toolkit Application Specific 

Parameters (Tag ‘CA’) TLV object 

□ 

2. SUCI API – key format 
Ensure that for the ProfileB scheme, the home network 

public key is provisioned in uncompressed format □ 



Enabling trust in a connected future        

 

44 
 

3. SUCI calculator applet - 
installation parameter 

Ensure that the applet implementing the 

SUCICalculator interface is granted with the required 

access rights (in the Access Domain field of the install 

parameters). 

□ 

 

  



Enabling trust in a connected future        

 

45 
 

 

10. About Trusted Connectivity Alliance 
 

Trusted Connectivity Alliance (TCA) is a global industry association working to enable trust in a 

connected future.  

The organisation evolved from the SIMalliance, reflecting the continued expansion of the global 

SIM industry and the need for broader collaboration. Its members are leading providers of secure 

connectivity solutions for consumer, IoT and M2M devices. This spans Tamper Resistant Element 

(TRE) technologies including SIM, eSIM, integrated SIM, embedded Secure Element (eSE) and 

integrated Secure Element (iSE), as well as hardware and software provisioning and other 

personalisation services. 

TCA members are: Card Centric, COMPRION, Eastcompeace, Giesecke+Devrient, IDEMIA, 

Kigen, Linxens, Monty Mobile, NXP Semiconductors, Oasis Smart SIM, STMicroelectronics, 

Thales, Valid, Workz Group, Wuhan Tianyu and XH Smart Card. 

www.trustedconnectivityalliance.org | News | Blog | X | LinkedIn | YouTube 

 

 

http://www.trustedconnectivityalliance.org/
https://trustedconnectivityalliance.org/latest-news/
https://trustedconnectivityalliance.org/news/
https://twitter.com/_TCAlliance
https://www.linkedin.com/company/trustedconnectivityalliance
https://www.youtube.com/@TrustedConnectivityAlliance

	1. References
	2. Abbreviations
	3. Definitions
	4. Introduction: The Java Card Applet Stepping Stones
	4.1. Target Audience
	4.2. Problem Statement
	4.3. Notes for Readers

	5. Understanding the Java Card Applet Ecosystem
	5.1. Java Card Technology (JC 3.0.5, JC 3.1.0,…)
	5.2. GSMA and 3GPP: Understanding Major Updates for Java Card Developers

	6. Java Card Applet Developer Best Practices
	6.1. Non-Volatile Memory (NVM) Update
	6.2. Fields and Local Variables
	6.3. Applet Deletion
	6.4. Object Constructors
	6.5. Stack Management
	6.6. Handlers (Re-entrance)
	6.7. Execution Time
	6.8. RAM Management
	6.9. Object Creation within Transactions
	6.10. Shareable Interface and Multi-Selection
	6.11. CLEAR_ON_DESELECT Memory Access
	6.12. Exception Handling
	6.13. Transactions
	6.14. CAP File Generation
	6.15. Toolkit Install Parameters
	6.16. FileView API Usage
	6.17. Menu Entry Initialisation
	6.18. Optimised API Usage
	6.19. SUCI API

	7. Java Card Applet Development Guidelines for Secure Products
	7.1. Security Recommendations for All Applets
	7.2. Additional Security Recommendations for Sensitive Applets

	8. Interoperability Testing Tools, Services and Events
	8.1. TCA Loader
	8.2. TCA eSIM Interoperability Service
	8.3. GlobalPlatform Test Fest
	8.4. GSMA LITE Event

	9. Interoperability Checklists
	10. About Trusted Connectivity Alliance

