
Interoperability Stepping
Stones
Release 6

Published by now Trusted Connectivity Alliance

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 2

Figure index .. 8

1 Introduction .. 9

2 Reference Documentation... 10

3 Abbreviations... 11

4 Definitions ... 13

5 Release 6: the standard evolution .. 14
5.1.1 UICC physical/logical characteristics..14
5.1.2 UICC OTA ..15
5.1.3 UICC Toolkit...16
5.1.4 UICC JAVA Card ...17

6 The UICC Architecture... 19

6.1 Definition of UICC ... 19

6.2 Application selection... 19

6.3 File system.. 20
6.3.1 Security architecture ..20
6.3.2 Referencing a EFARR record: the Referenced Format...21
6.3.3 Structure of the EFARR file..21

6.4 PIN in the UICC... 23
6.4.1 Security Environments in the UICC ...23
6.4.2 Retrieving information about a file: the FCP template..24
6.4.3 Files Life Cycle Status...25

6.5 Mapped files.. 26

7 Java Card Features .. 27

7.1 Java Card Language: a Subset of Java Language ... 27

7.2 Backward Compatibility .. 27

7.3 The Java Card Runtime Environment.. 27
7.3.1 Atomicity and Transactions...27
7.3.2 Security Concept and Firewalls ...28
7.3.3 Entry Point Objects ..29
7.3.4 Global Arrays ...30

7.4 The Java Card VM.. 30
7.4.1 Summary of Java Card Language Limitations ..30
Summary of Java Card VM Constraints...30

7.5 Development tools .. 31
7.5.1 Converter...31
7.5.2 Verifier...31

7.6 The Java Card API... 31
java.lang ..32
javacard.framework..32
javacard.framework.service ...33
javacard.security..34
javacardx.crypto..34
java.rmi ..34

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 3

7.7 New JC 2.2.1 Features .. 34
7.7.1 Logical Channels ..35
7.7.2 Applet and Package deletion...35
7.7.3 Java Card Remote Method Invocation (JCRMI)..36

7.8 Managing Memory and Objects... 38
7.8.1 Garbage collector:..39

7.9 Java Card Technology Compatibility Kit.. 39

7.10 Overview of Versions needed for basic interoperability................................. 39

8 Card Application Toolkit (CAT) - USIM Application Toolkit (USAT) 40

8.1 Scope .. 40

8.2 CAT commands ... 40

8.3 What is a CAT session? ... 40

8.4 What is a proactive session?... 41

9 (U)SIM and UICC API description ... 42

9.1 Scope .. 42

9.2 Toolkit API and CAT Runtime Environment .. 42
9.2.1 The CAT Runtime Environment...42
9.2.2 Toolkit applet ...42

9.3 Terminal Profile .. 46

9.4 Envelope management ... 46
9.4.1 Envelope management ...46
9.4.2 EnvelopeResponseHandler management for the EVENT_FORMATTED_SMS_PP_ENV event47
9.4.3 EnvelopeResponseHandler management for the events EVENT_CALL_CONTROL_BY_NAA or

EVENT_MO_SHORT_MESSAGE_ CONTROL_BY_NAA_SMS_PP_ENV ..47
9.4.4 Details ...48

9.5 Event management ... 48
9.5.1 Overview ...48
9.5.2 List of the available Events ...49
9.5.3 Events Description..50

9.6 Proactive Command.. 57
9.6.1 Proactive command management ...57
9.6.2 Details on the Proactive Handler and ProactiveResponse Handler ..59
9.6.3 System Proactive commands ..59

9.7 File access API and File administration API.. 60
9.7.1 Structure of the File System ...60
9.7.2 The file access API ...61
9.7.3 File Administration API ...62

9.8 An useful resource: the uicc.system package ... 64

9.9 SIM API... 65

10 The phonebook ... 66

10.1 Phonebook Principle .. 66

10.2 Structure of the phonebook ... 66

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 4

10.2.1 The different files used to define a contact ...66
10.2.2 The EFPBR file (Phone Book Reference)..67
10.2.3 The EFIAP file (Index Administration Phonebook)..68
10.2.4 The EFPBC file (Phone Book control)...68
10.2.5 The other files..68

10.3 An example of phonebook content .. 68

10.4 Global and local phonebooks ... 69

10.5 Link with the GSM SIM phonebook .. 69

10.6 Phonebook synchronization ... 70

11 Interworking between SIM and USIM applications................................... 71

11.1 IMSI, secret key and authentication algorithm ... 71

11.2 Secret codes... 71

11.3 Mapping of CHV1.. 71

11.4 Mapping of CHV2.. 72

11.5 Mapping of Local PINs ... 72

11.6 Mapping of administrative PINs... 72

11.7 Access condition .. 72

11.8 Access to file system for 2G / 3G applets... 72
11.8.1 Definitions ...72
11.8.2 Accessibility table ...72

11.9 Activation of SIM and USIM applications... 72

11.10 SIM and USIM APIs interworking ... 73
11.10.1 Terminal Profile ..73
11.10.2 Triggering and Registration...73
11.10.3 System handlers and proactive commands ..73
11.10.4 Behaviours of SIM API used in a 3G mode...73

11.11 Behaviours of USIM API used in 2G mode .. 74

12 SMS PP and CB Packets for USIM Applications .. 75

12.1 Single Short Message Point to Point Description ... 75
12.1.1 General structure of Single Short Message Point to Point Envelope ..75
12.1.2 General structure of the User Data Header in a Secured Single Short Message Point to Point76

12.2 Structure of the Command Packet contained in a single secured SM PP or in a
Formatted SM .. 77
12.2.1 Structure of the UDH in the case of Command Packet ...77
12.2.2 Structure of the Command Packet ..78

12.3 Structure of a Response Packet contained in a Single Short Message Point to

Point 80
12.3.1 Structure of the UDH in case of Response Packet..80
12.3.2 Structure of the Response Packet ...80

12.4 Structure of the Single Short Message Point to Point throw the USIM API ... 82
12.4.1 TLV structure for Envelopes (SMS-PP DOWNLOAD)...82
12.4.2 TLV structure for Update EFSMS APDU: ..83

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 5

12.4.3 Structure of the USAT EnvelopeHandler ..83

12.5 Concatenated Short Message Point to Point Description 84
12.5.1 General structure of Concatenated Short Message Point to Point Envelope...84
12.5.2 General structure of the User Data Header in Concatenated Short Message Point to Point......................84
12.5.3 Structure of the Command Packet contained in Concatenated Short Message Point to Point85
12.5.4 Structure of the Response Packet contained in Concatenated Short Message Point to Point....................86
12.5.5 Structure of the Concatenated Short Message Point to Point throw the USIM API...................................87

12.6 TLV structure for Envelopes (SMS-PP DOWNLOAD)....................................... 87
12.6.1 Formatted Short Message...87
12.6.2 TLV structure for Update Record...89
12.6.3 Methods to retrieve UDL...89

12.7 Concatenated SMS and Interoperability issues.. 89

12.8 Short Message Cell Broadcast Description... 90
12.8.1 Structure of the CBS page in the SMS-CB Message..90
12.8.2 Cell Broadcast Page Parameters..90
12.8.3 A Command Packet contained in a SMS-CB message...91
12.8.4 Structure of the Response Packet for a SMS-CB Message ..92
12.8.5 Structure of Short Message Cell Broadcast throw the USIM API ...92

12.9 Multiple Short Message Cell Broadcast Description 93
12.9.1 Structure of Multiple Short Messages Cell Broadcast throw the USIM API...93

13 Security Parameters Description for Secure Packets................................. 95

13.1 Coding of the SPI: Security Parameter Indicator... 95
13.1.1 Coding of the Kic field ..96
13.1.2 Coding of the KID field ...97
13.1.3 Coding of the KID for Cryptographic Checksum...97
13.1.4 Coding of the KID for Redundancy Check..97

13.2 Counter Field and Management ... 98

14 BIP commands and events ... 99

14.1 Introduction to the Bearer Independent Protocol (BIP)................................ 99

14.2 BIP Commands description.. 100
14.2.1 OPEN CHANNEL ...100
14.2.2 OPEN CHANNEL related to Circuit Switched bearer ..100
14.2.3 CLOSE CHANNEL..102
14.2.4 SEND DATA ...103
14.2.5 RECEIVE DATA...103
14.2.6 GET CHANNEL STATUS ..103
14.2.7 SERVICE SEARCH...103
14.2.8 GET SERVICE INFORMATION ...103
14.2.9 DECLARE SERVICE ...103

14.3 BIP Events description... 104
14.3.1 EVENT DOWNLOAD (DATA AVAILABLE):...104
14.3.2 EVENT DOWNLOAD (CHANNEL STATUS) ..104
14.3.3 EVENT DOWNLOAD LOCAL CONNECTION...104
14.3.4 Terminal Profile indication for BIP...105

14.4 Java-API for BIP .. 105

14.5 Reliability and Security using BIP.. 107

14.6 Applet Developer tips... 107

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 6

15 Card Remote Management ... 109

15.1 Remote Management Application data formats... 109
15.1.1 Compact Remote Management Application data format...109
15.1.2 Compact Remote response structure...109
15.1.3 Expanded Remote Management Application data format ...109
15.1.4 Expanded Remote Commands ..110
15.1.5 Expanded Remote Responses ...111

16 Remote File Management Architecture.. 112

16.1 Remote File Access for UICC .. 112

16.2 Remote File Access for ADF.. 112

16.3 Remote File Application Parameters .. 113

16.4 Remote File Management AID and TAR ... 113
16.4.1 RFM Commands ...114

17 Remote Application Management .. 116

17.1 Remote Application Management Architecture.. 116
17.1.1 Application Loading and Installation Process ...116
17.1.2 Application Life Cycle States ...117

17.2 Description of the IN/OUT Commands... 117
17.2.1 LOAD Command...118
17.2.2 INSTALL (load) Command ..118
17.2.3 INSTALL(Install) Command ..119
17.2.4 DELETE Command ...125
17.2.5 GET DATA command..126
17.2.6 GET STATUS command ..126
17.2.7 PUT KEY command ..127

18 Security domain and Key Management.. 128

18.1 Security Domains on UICC Java Cards ... 128
18.1.1 Introduction ...128
18.1.2 Security Domains in non-OTA communication ...128

18.2 Security Domains in OTA-communication.. 129
18.2.1 Key Management ...129
18.2.2 Set Up of Security Domains ..130
18.2.3 Interoperability regarding Security Domains and GP security ...130

18.3 Key Management ... 130
18.3.1 Algorithm...130
18.3.2 Key Set Version..131

A AID and TARs (annex) .. 132

A.1 AID Format ... 132

A.2 Registered application provider IDentifier (RID) ... 132

A.3 Proprietary application Identifier eXtension (PIX)... 132

A.4 PIX Coding for different Applications ... 133

A.5 Toolkit Application Reference (TAR)... 135

A.6 Telecom API Package Version Management ... 135

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 7

A.7 SIM API package version management .. 136

A.8 UICC API package version management .. 136

A.9 USIM API for Java Cards package version management 136

A.10 Java Card API Packages... 137

B TLV Coding (annex) .. 138

B.1 Tag coding.. 138

B.2 BER-TLVs.. 139

B.3 COMPACT-TLVs .. 139

B.4 COMPREHENSION-TLVs ... 139

B.5 Length coding .. 140

B.6 Value coding .. 140

C Administrative Commands (annex).. 141

C.1 CREATE FILE ... 141

C.2 DELETE FILE.. 143

C.3 RESIZE FILE .. 144

D SIM Alliance Interoperable Loader (annex)... 147

E Change History (annex) .. 149

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 8

Figure index

Figure 1 - The UICC Architecture...19
Figure 2 - The JCRE Context..28
Figure 3 – Converting a CAP file ..31
Figure 4 – RMI communications ..37
Figure 5 – File system structure in the UICC ..60
Figure 6 – A good example of a Phonebook ...69
Figure 7 – Formatted SM structure ..75
Figure 8 - The UDH in an SM-PP..76
Figure 9 - The UDH structure ..77
Figure 10 – Response packet structure ..80
Figure 11 - The User Data Header in C-SM PP..84
Figure 12 - The USAT Envelope Handler content in case of Formatted SM ..88
Figure 13 - The CBS pages ..90
Figure 14 - CBS structure with Secured Data ...93
Figure 15 – USAT Envelope Handler in case of formatted CB..94
Figure 16 – USAT Envelope Handler in case of unformatted CB ..94
Figure 17 –BIP Protocol stack..99
Figure 18 – Expanded Remote Format...110
Figure 19 – Format of a Command Session TLV ...110
Figure 20 – Response Scripting Template structure..111
Figure 21 – R-APDU TLV structure...111
Figure 22 – The ways of accessing an ADF ..113
Figure 23 – Remote Application Management Architecture ...116
Figure 24 – Loading and installing an application ...117
Figure 25 – SAT and USAT toolkit install parameters..120
Figure 26 – Security Domains in non-OTA communications ..129
Figure 27 – Structure of an AID...133
Figure 28 – TLV structure for the CREATE command..143
Figure 29 – SIM Alliance Interoperable Loader Architecture..147

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 9

1 Introduction

In today's telecom environment, innovative services must be launched not only within the shortest timeframe, but also
with greater flexibility for future upgrades and easy service maintenance. During the years, Java Card has proved itself
as the key technology in service deployment.

The Java Card™ 2.1 standard was released by the Java Card Forum in early 1999. At the same time, ETSI endorsed the
use of Java Card™ in SIM cards and defined the GSM SIM API for Java Cards.

Since them, Java Card technology and ETSI specifications have been continuously evolving to face new services and new
potentiality, up to the 3G telecommunication world, finalized in the Release 6 of ETSI specifications.

At the same times, interoperability between smart cards improved due to the field experience and also due to the
Interoperability Stepping Stones, intended to address and solve all different interpretations of the specifications that
could lead to different implementations.

Completing ETSI's work of releasing specifications and test suites, the purpose of this guide is to provide developers with
information concerning Java Card™ SIM constraints and a common interpretation of the standards for the members of

the SIM Alliance that contributed to this document.

The target audience of this guide is Network Operators, Wireless Service Providers and anyone interested in
interoperable Java Card applet development.

Used in conjunction with the Java Card Applet Developer's Guide from SUN Microsystems, this guide aims to allow
interoperable Java Card applications to be developed, thereby providing:

• Interoperable behaviors of the Java Cards

• A common implementation of the standard APIs

This was achieved following a detailed gap analysis of all the Java Cards on the market, the results of which clarify and

explain the following standards:

• Java Card (JCRE, API)
• Toolkit APIs

• Toolkit security
• Remote Management (Application Loading, File Management)

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 10

2 Reference Documentation

Entity Reference Title

ETSI

(www.etsi.org)

TS 101 220 Release 7 ETSI Numbering System for Telecommunications; Application Providers (AID)

 TS 102 221 Release 6 UICC-Terminal interface; Physical and logical characteristics

 TS 102 222 Release 6 Administrative commands for telecommunications applications

 TS 102 223 Release 6 Card Application Toolkit (CAT)

 TS 102 225 Release 6 Secured packet structure for UICC based applications

 TS 102 226 Release 6 Remote APDU structure for UICC based applications

 TS 102 241 Release 6 Java Card(TM) API for the UICC

3GPP

(www.3gpp.org)

TS 31.101 Release 6 UICC-terminal interface; Physical and logical characteristics

 TS 31.102 Release 6 Characteristics of the USIM application

 TS 31.111 Release 6 Universal Subscriber Identity Module Application Toolkit (USAT)

 TS 31.115 Release 6 Secured packet structure for (Universal) Subscriber Identity Module (U)SIM
Toolkit applications

 TS 31.116 Release 6 Remote APDU Structure for (Universal) Subscriber Identity Module (U)SIM
Toolkit applications

 TS 31.130 Release 6 (U)SIM Application Programming Interface (API); (U)SIM API for Java Card

 TR 31.900 Release 6 SIM/USIM internal and external interworking aspects

 TR 31.919 Release 6 2G/3G Java Card(TM) Application Programming Interface (API) based applet
interworking

GlobalPlatform

(www.globalplatform.org)

 Global Open Platform Card Specification, Version 2.1.1 (plus Amendment A –
check by all)

Sun Microsystems

(http://java.sun.com/
products/javacard/)

 Java Card 2.2.1 Virtual Machine Specification

 Java Card 2.2.1 Runtime Environment (JCRE) Specification

 Java Card 2.2.1 Application Programming Interface

 Java Card Applet Developer's Guide, Java Card Version 2.2.1

ISO ISO 8825-5: 2004 Information technology - ASN.1 encoding rules: Mapping W3C XML schema
definitions into ASN.1

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 11

3 Abbreviations

2G 2nd Generation Network

3G 3rd Generation Network

3GPP 3rd Generation Partnership Project

ADF Application Dedicated File

AID Application Identifier

AM_DO Access Management Data Object

APDU Application Protocol Data Unit

API Application Programming Interface

APN Access Point Name

ATR Answer To Reset

AuC Authentication Center

BER Basic Encoding Rules

BIP Bearer Independent Protocol

CAP Converted Applet Package

CAT Card Application Toolkit

CAT_TP CAT Transmission Protocol

CC Cryptographic Checksum

CHV Card Holder Verification

CLA Class byte of the APDU

CSD Circuit Switched Data

DAP Data Authentication Pattern

DEK Data Encryption Key

DES Data Encryption Standard

DF Dedicated File

DO Data Object

DS Digital Signature

EF Elementary File

ETSI European Telecommunications Standards Institute

EXP Export File

FCP File Control Parameters

FDN Fixed Dialing Numbers

FID File Identifier

GGSN Gateway GPRS Node

GP Global Platform

GPRS General Packet Radio Service

GSM Global System for Mobile communications

HLR Home Location Register

HSCSD High Speed Circuit Switched Data

ICC Integrated Circuit Card

INS Instruction byte of the APDU

IP Internet Protocol

IrDA Infrared Data Association

ISD Issuer Security Domain

JC Java Card

JDK Java Development Kit

K Secret Key in 3G

Ki Secret Key in 2G

KIc Key and algorithm Identifier for ciphering

KID Key and algorithm Identifier for RC/CC/DS

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 12

Lc Length of the Command data sent by the application layer

Le Length Expected

LND Last Number Dialed

ME Mobile Equipment

MF Master File

MSISDN Mobile Station International ISDN Number

MSL Minimum Security Level

NAA Network Access Application

OPEN Global Platform Environment

OTA Over The Air

P1 Parameter byte 1 of the APDU

P2 Parameter byte 2 of the APDU

P3 Parameter byte 3 of the APDU

PDP Packet Data Protocol

PIN Personal Identification Number

PIX Proprietary application Identifier eXtension (part of the AID)

PoR Proof of Receipt

RAM Remote Applet Management

RC Redundancy Checksum

RFM Remote File Management

RID Registered application provider IDentifier (part of the AID)

RMI Remote Method Invocation

RS232 Recommended Standard 232

RTE Runtime Environment

SAT Sim Application Toolkit

SC_DO Security Condition Data Object

SCP Smart Card Platform

SD Security Domain

SE Security Environment

SGSN Serving GPRS Node

SIM Subscriber Identity Module

SMS Short Message Service

SW Status Word

TAR Toolkit Application Reference

TCK Test Compatibility Kit

TCP Transmission Control Protocol

TLV Tag Length Value

TS Technical Specification

UDP User Datagram Protocol

UICC Universal Integrated Circuit Card

UMTS Universal Mobile Telecommunication System

USAT USim Application Toolkit

USB Universal Serial Bus

USIM Universal Subscriber Identity Module

UTRAN UMTS Terrestrial Radio Access Network

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 13

4 Definitions

Global Platform API The GlobalPlatform API provides services to Applications (e.g. cardholder
verification, personalization, or security services).

Integrated Circuit Card The most general term for a smart card is “ICC”. It is always a physical and logical
entity either a SIM or a UICC.

Issuer Security Domain The representative entity of the card issuer. It provides support for control, security
and communication requirements of the card issuer.

Over-The-Air Technology which uses the mobile network features to download data to the UICC.

Remote Application
Management

Remote Application Management applications are OTA interfaces to the Issuer
Security Domain and other Security Domains.

Security Domain A special application that supports a secure communication between an Application
Provider’s application and off-card entities during its personalization phase and

runtime.

Subscriber Identity Module “SIM” is the term that defines the ICC for a 2G card, there is no distinction
between the physical and logical entity and the application itself. In a UICC, the

“SIM” is an application. If it is active, the UICC is functionally identical to a 2G card.

Toolkit Application

Reference

Unique identification for Toolkit applications when using Over-The-Air functionality.

Universal Integrated Circuit
Card

The UICC is the physical and logical platform for the USIM. It can, at least, contain
one USIM application and may additionally embed a SIM application.

Universal Subscriber
Identity Module

The USIM is not a physical entity. It is a purely logical application on a UICC. It
does only accept 3G commands and therefore it is not compatible with a 2G ME.
The USIM may provide mechanisms to support 2G authentication and key
agreement to allow a 3G ME to access to a 2G network. (see 3GPP TS 31 102)

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 14

5 Release 6: the standard evolution

The Release 6 introduces a new set of standards for File System, Over The Air remote management, Toolkit feature and
associated APIs. The following chapter lists the document specifications in order to help the reader in understanding the
relationships between them. Historical evolution of the standard is also described to show the path from previous

Release specifications to Release 6 specifications.

5.1.1 UICC physical/logical characteristics

UICC

3GPP 31.101 : UICC-terminal interface - Physical and logical characteristics

3GPP 31.900 : SIM/USIM internal and external interworking aspects

ETSI 102 221 : Smart cards – UICC/Terminal interface - Physical and logical characteristics

ETSI 102 222 : Integrated Circuit Cards (ICC) - Administrative commands for telecommunications applications

USIM SIM

3GPP 31.102 : Characteristics of the USIM application

3GPP 51.011 R4 : Specification of the Subscriber Identity

Module - Mobile Equipment (SIM - ME) Interface

Evolution of standards can be represented as followed:

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 15

GSM11.11 31.101 31.102

51.011

102 221

Physical, electrical, and

commands description

applications

SIM (R4)

102 222

Admin.Commands (create file, etc)

3GPP Card platform

USIM

Card platform

SIM (up to R99)

5.1.2 UICC OTA

UICC

ETSI TS 102 225 : Smart cards, Secured packet structure for UICC based applications

ETSI TS 102 226 : Smart cards, Remote APDU structure for UICC based applications

(U)SIM

3GPP TS 23.040:Technical realization of the Short Message Service (SMS)

3GPP TS 23.041:Technical realization of Cell Broadcast Service (CBS)

3GPP TS 31.115:Secured packet structure for (U)SIM Toolkit applications (SMS-PP and SMS-CB)

3GPP TS 31.116:Remote APDU Structure for (U)SIM Toolkit applications (RFM and RAM)

Evolution of standards can be represented as followed :

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 16

GSM03.48

31.115

31.116

102 225 Security aspects

RFM & RAM

23.048

R5

R6

102 226

(U)SIM
specificities

Generic part

5.1.3 UICC Toolkit

UICC

ETSI TS 102 223: Smart cards, Card Application Toolkit (CAT)
Interface between the UICC and the terminal, and mandatory terminal procedures, specifically for NAA (Network Access
technology) CAT (Card Application Toolkit).

USIM SIM

3GPP TS 31.111 : USIM Application Toolkit (USAT)

3GPP 51.014 R4 : Specification of the SIM Application

Toolkit for the SIM - ME interface

Evolution of standards can be represented as followed:

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 17

GSM11.14 51.014

31.111

102 223

CAT

USAT SIM (R4)

SAT SIM (up to R99)

5.1.4 UICC JAVA Card

UICC

ETSI TS 102 241 : Smart cards, UICC Application Programming Interface (UICC API) for Java Card

(U)SIM

3GPP TS 31.130 : (U)SIM Application Programming Interface,((U)SIM API) for Java Card
This API allows developing a (U)SAT application running together with a (U)SIM application and using GSM/3G network
features.

102 241 packages

uicc.access

Access to the UICC file system
uicc.access.fileadministration
Administrate the UICC file system
uicc.system
Utility package allows creating objects that are implementing TLV handler interfaces
uicc.toolkit
Register to the events of (CAT) framework, Handle of TLV information; send proactive commands according to TS 102
223.

31.130 packages

uicc.usim.access
Access to the files defined in the USIM, SIM.

 uicc.usim.toolkit

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 18

Register to the events defined in the USAT and STK, handle of TLV information and send proactive command according
to 31.111 and 51.014.

Evolution of standards can be represented as followed :

31.130 102.241

UICC API (U)SIM API

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 19

6 The UICC Architecture

The present chapter is an overview of the UICC architecture and of its implementation for the UMTS environment.

Java Card applications developers can found in this chapter some clues to find information to develop services.

An overview of the card architecture can be found in Figure 1.

 Figure 1 - The UICC Architecture

6.1 Definition of UICC

The UICC is the physical and logical platform for 3G telecom applications. It contains at least one 3G telecom application
(USIM), but it may also contain also a 2G telecom application (GSM) or other applications.

As a logical platform, the UICC provides some general mechanisms that can be used by each application on top of the

UICC; these mechanisms cover application selection, file system access and management, and security features.

6.2 Application selection

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 20

Several applications can be present in an UICC; to initiate an application session, the terminal sends a SELECT command
with the application's AID. Once an application is selected, subsequent APDUs are dispatched by the UICC to the
selected application.

Any application based on 102 221 specifications is also the manager of a dedicated folder called ADF. The list of the

AIDs of such applications is stored in EFDIR under MF that can be accessed and read by other applications and terminals.

To have more applications selected on the UICC at the same time, the mechanism of the Logical Channels is present. On
each Logical Channel a different application can be selected; moreover, files can be selected on each Logical Channel

(see ISO/IEC 7816-4). This allows concurrent accesses to different files and also concurrent accesses to the same file.

6.3 File system

In the UICC, several kinds of file can be present:

• Dedicated File (DF) that allows functional grouping of files. They can be the parents of DFs and/or EFs. DFs are
referenced by file identifiers.

• Application DF (ADF) is a particular DF that contains all the DFs and EFs of an application. ADF are referenced

by a DF Name (or AID)
• Elementary File (EF), that contain data and no other files; they can be Transparent, Linear Record, Cyclic

Record or BER-TLV structured as defined in ETSI TS 102 221

Elementary Files can be addressed by File Identifier (FID), a two-bytes ID, or by Short File Identifier (SFI). The SFI can
be used in file system access APDUs to implicitly select the file without sending an explicit SELECT FILE APDU.

6.3.1 Security architecture

The security architecture in the UICC consists of the following parts:

• Security attributes: a set of access rules; they are attached to an ADF/DF/EF and they are part of the FCP (see

§ 6.4.2).
• Access rules: consist of an access mode and one or more security conditions.
• Access Mode (AM): indicates to which operations (commands) the security condition applies; they are coded in

Access Mode Data Objects (AM_DOs).

• Security Condition (SC): contains references to the applicable key references (PINs); they are coded in Security
Conditions Data Objects (SC_DOs).

Each operation applicable to a file (except its selection) is protected by one or more Security Conditions, identifying the
prerequisites of the operation. The UICC checks, in order to allow a file operation, the Security Condition related to the
relevant Access Mode to verify if the security related procedures (e.g. user PIN verification) are satisfied.
The default security condition associated to an operation is NEVER. This means that the security condition for an

operation whose SC_DO object can not be found is set to NEVER.

The Security Attributes can be specified, for each file, in several formats:
• Compact format

• Expanded format
• Access rule referencing

The different formats have different limitations: the Compact Format is less flexible than the Expanded format, and the
Expanded format is less flexible than the Access Rules Referencing format.

Though in the UICC there are three different ways to code security attributes, in the USIM all Security Attributes are

coded in Access Rules Referencing format (EFARR) according to TS 31.102; as a consequence, we consider Compact
format and Expanded format out of the scope of the present document.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 21

6.3.2 Referencing a EFARR record: the Referenced Format

The referenced format is indicated in the FCP following tag '0x8B'. The access rule is stored in a file, EFARR. This file is a
linear fixed file. Referencing is based on the following two methods:

• File ID and record number (File ID, record number);

• File ID, SE ID and record number (File ID, SE ID, record number).

The second possibility allows the usage of different access rules in different security environments as defined in the
following. When referencing EFARR is based on the file ID, the rules for the location of the access rules are as follows:

• for an EF, if the EFARR file with the file ID indicated in tag '0x8B' cannot be found in the current DF, the parent
DF shall be searched for EFARR. This process shall continue until the EFARR is found or until an ADF or the MF is

reached;
• for a DF, if the EFARR file with the file ID indicated in tag '0x8B' cannot be found in the parent DF, the

grandparent DF shall be searched for EFARR. This process shall continue until the EFARR is found or until an ADF
or the MF is reached;

• for the MF or an ADF, the EFARR file with the file ID indicated in tag '0x8B' shall be searched under the MF.

The structure of the access rule referencing DO is as follows.

Tag Length Value

'8B' '03' File ID, record number

'8B' '02' + n x '02' File ID, SE IDn1, Record number X, SE IDn2, Record number
Y, etc.

6.3.3 Structure of the EFARR file

The structure of the EFARR file is as follows.

Record Number (ARR) Record Content (Access Rule)

'01' AM_DOSC_DO1SC_DO2AM_DOSC_DO3SC_DO4 ….

'02' AM_DOSC_DO1AM_DOSC_DO5SC_DO6 ….

… …

6.3.3.1 AM_DO coding

The AM data objects are coded in different formats depending on the operation to be protected.

6.3.3.2 AM_DO coding for EF operations
For Elementary files, all the following operations are coded in the AM_DO as a bit mask:

 b8 b7 b6 b5 b4 b3 b2 b1

DELETE (self) 0 1 - - - - - -

TERMINATE 0 - 1 - - - - -

ACTIVATE 0 - - 1 - - - -

DEACTIVATE 0 - - - 1 - - -

UPDATE BINARY
UPDATE RECORD
SET DATA

0 - - - - - 1 -

READ BINARY

READ RECORD
SEARCH RECORD

0 - - - - - - 1

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 22

RETRIEVE DATA

The bit mask is stored in an AM_DO TLV with the tag set to 0x80:

As the above operations are coded in bit masking, it’s possible to code more operations in the same AM byte; in this

case, all the operations indicated in the bit mask will share the same Security Conditions.
The INCREASE and the RESIZE commands have a different way to code the AM_DO byte:

for the INCREASE command and

for the RESIZE command.
Only the INCREASE command or the RESIZE command can be stored in the TLV; so it’s not possible to code more

operations in this AM_DO TLV.

6.3.3.3 AM_DO coding for DF operations
For Dedicated files, all the following operations are coded in the AM_DO as a bit mask:

 b8 b7 b6 b5 b4 b3 b2 b1

DELETE FILE (self) 0 1 - - - - - -

CREATE FILE
DF creation

0 - - - - 1 - -

CREATE FILE

EF creation
0 - - - - - 1 -

DELETE FILE (child) 0 - - - - - - 1

The bit mask is stored in an AM_DO with the tag set to 0x80:

The same procedure as for AM_DO bitmap for EFs applies.
The RESIZE command has a different way to code the AM_DO byte:

Only the RESIZE command can be stored in the TLV; so it’s not possible to code more operations in this AM_DO TLV.

Interoperability issue

The RESIZE command may not be supported for a DF.

6.3.3.4 SC_DO coding

The Security Condition (SC) indicates which security related procedures are requested in order to perform a file
operation. In the UICC three different SC_DOs are defined:

• Always

• Never
• PIN Verification

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 23

It’s also possible to define more PIN SC_DOs for the same operation, both in AND (all conditions are required to be

fulfilled) / OR (just one condition must be fulfilled) mode:

6.4 PIN in the UICC

Different types of PINs are present on the UICC: the Application PINs, the Local PINs, the Universal PIN and the
Administrative PINs,. Each PIN that is present under a (A)DF is indicated in the FCP of the (A)DF in the PIN Status
template DO; each PIN is identified by the Key Reference number.

The Key reference number is used also in PIN related APDUs to address PIN.

Application PIN

An application PIN is a PIN that allows access to any file on the UICC where it is referenced in the access rules. It is
uniquely identified by the Key Reference number that is in the set 0x01 – 0x08

Local PIN

A local PIN is a PIN that uses a local key reference which is only valid within the ADF/DF where it is indicated in the FCP.
Key reference numbers for Local PIN are in the set 0x81 – 0x88; two different ADFs can use the same local key

reference number with different PIN value and different status (enabled, disabled, verified, blocked), one for each ADF.

Universal PIN

The Universal PIN is a PIN that is used in a multi-application environment to allow several applications to share one
common PIN. The Universal PIN is a global access condition that has been assigned a key reference value '11'.

Administrative PIN
Up to 10 administrative PINs may be available. They are usually dedicated to the operator. They are uniquely identified
by the Key Reference number that is in the global set 0x0A – 0x0E and the local set 0x8A – 0x8E.

Interoperable issue:

It's not guaranteed by all SIM Alliance members that the Local PIN may be defined under DFs that are different
from the ADF; usage of local PIN defined under the ADF is guaranteed.

Interoperability Issue

SIM Alliance Members can not guarantee that the uses of the administrative PINs are fully interoperable
especially concerning the range 0x8A – 0x8E.

6.4.1 Security Environments in the UICC

The Security Environment (SE) is a mechanism to specify, for the card system, the security functions that are available
to provide protection to commands for a specific application of the card.
As the security functions in the UICC concern PIN verification, the changing of PIN status can affect the currently active
security environment.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 24

In multi-application UICC with Universal PIN, two different Security Environments are defined depending on Application
PIN status; each Application PIN can be in one of the following status:

• The Application PIN is enabled. In this case, each operation protected by the Application PIN still requires the
PIN verification to be allowed.

• The Application PIN is disabled. In this case, card behavior depends on the usage qualifier specified for the
Application PIN. This can be:

“Use Universal PIN” (Usage qualifier set to ’08’). In this case, the operations protected by Application
PIN are considered as protected by the Universal PIN: it’s required to verify the Universal PIN to allow such

operations.
“Do not use Universal PIN” (Usage qualifier set to ‘00’). In this case, the operations remain protected by
the Application PIN, that is disabled (this allows the operations).

The current SE depends on the state of the Application PIN of the current application; if the Application PIN of the
current application is disabled with Usage Qualifier set to “Use Universal PIN”, the current SE is the SE 00; in the other
cases, the current SE is the SE 01.

Developer tip:
Toolkit applet access conditions consider the active Security Environment as the SE 01; they don’t care Universal

PIN.

6.4.2 Retrieving information about a file: the FCP template

In case of successful selection using the SELECT APDU, the File Control Parameters (FCP) template is returned by the
card; this template contains some information about the selected file and the card itself.

Each FCP template is a BER-TLV (tag ‘62’) made by a list of TLVs; the available TLVs differ depending on file type (e.g.
EF or DF).

FCP template for MF, DF or ADF:

Description Tag Status

File Descriptor '82' M

File Identifier '83' C1

DF name (AID) '84' C2

Proprietary information 'A5' C3

Life Cycle Status Integer '8A' M

Security attributes '8B', '8C' or 'AB' C4

PIN Status Template DO 'C6' M

Total file size '81' O

M: Mandatory.
O: Optional.
C1: The File identifier is mandatory for a DF or the MF. For a ADF the File
identifier is optional.
C2: DF name is mandatory for only ADF.
C3: Proprietary information is mandatory for the MF. For a DF/ADF the

Proprietary information is optional.
C4: Exactly one shall be present.

FCP template for EF:

Description Tag Status

File Descriptor '82' M

File Identifier '83' M

Proprietary information 'A5' O

Life Cycle Status Integer '8A' M

Security attributes '8B', '8C' or 'AB' C1

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 25

File size '80' M

Total file size '81' O

Short File Identifier (SFI) '88' O

M: Mandatory.
O: Optional.
C1: Exactly one shall be present.

TLV description:

• File Descriptor: specifies the file accessibility, the file type and structure. It indicates if a file is an EF or a DF,
if it is record based or transparent, and so on.

• File Identifier: The File Identifier is a two bytes data unique for each DF identifying the file.
• DF Name (or AID): is a string of bytes which is used to uniquely identify an application dedicated file in the

card.
• Proprietary Information: is a Constructed TLV (i.e., a TLV containing Simple TLVs), containing some TLV

specified by the standard and also some TLV specified from singular SIM Vendors.

Developer Tip

The proprietary TLV contained in this Constructed TLV may vary among card vendors and among different card
versions.

Concerning the Security Attributes only the tag '8B' is managed. The other ways of coding (tags '8C' or ‘AB’) are
out of the scope of this document. See chapter “Security architecture”.

• Life Cycle Status Information (LCSI): is a TLV indicating file status respect to its activation status (i.e.
Activated / Deactivated) and its administrative status (just created, initialized, and so on).

• Security Attributes: contains information about the security related procedures required to allow file

operations. (See § 6.3.1).
Developer Tip
Only the tag '8B' is managed. The other ways of coding (tags '8C' or ‘AB’) are out of the scope of this document.

• PIN Status template DO: contains a list of all the PINs available in that (A)DF or MF and their activation

status (enabled / disabled).
• File Size: indicates the size of the BODY of the EF.

• Total file size: indicates the size occupied on the card by the file (including structural information)

• Short File Identifier (SFI): if the SFI is indicated, it can be used as defined in § 6.3.

A possible FCP template for a DF or MF follows:

6.4.3 Files Life Cycle Status

Any file on the UICC – both EFs and DFs - moves during its life through different Life Cycle Status; depending on the

current status, some operations concerning the file are allowed or denied or they are protected by different access
conditions.

The concept of Life Cycle Status is specified in ISO IEC 7816-9, but the concept has been partially endorsed by ETSI
specification; as an example, the above specified LCSI in the FCP indicates the current status.

The following states are defined according to ISO specification:

• Creation, right after a file has been created
• Initialization

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 26

• (Operational) Activated
• (Operational) Deactivated

• Terminated

Transitions between different states are performed by Administrative Commands (like Activate or Terminate).

The “operational” states are to be considered as the most common states for deployed cards.

Example

A file moves from Activated state to Deactivated state and vice versa by the commands Activate File and
Deactivate File.

Interoperability Warning

SIM Alliance members don’t guarantee that transitions between the above states can be done in an interoperable
way

SIM Alliance members don’t guarantee that any of the above states is reachable on the different smartcard
products, especially concerning the non-operational states.

6.5 Mapped files

A new concept in 3G specifications is the “mapped files”. Two files are considered mapped when they share the same
body; the concept has been introduced as both GSM and USIM specifications define some files that are present in

different directory, but with the same format and the same meaning; if these files are mapped each other, the card
benefits both of resource saving and of content coherency.

Example:

The EF_ADN defined in USIM specification and the EF_ADN defined in GSM specification are usually linked in
order to have the same list of contacts for both subscriptions.

Two mapped files does not share only the file body but they share also some other information, like the file structure

(e.g. both are record based or both are transparent) the size, the record length, the last increased record (for cyclic file)
and so on. Some other information may be different for the two files, like the file id, the access conditions or the file
status (e.g. one file can be activated while the other one is deactivated).

Interoperability issues:

• There is no standard way to indicate, in the CREATE command, that two files are mapped. SIM Alliance

members extend the CREATE command by using proprietary mechanisms to create mapped files.
• There is no information in the FCP template indicating if two files are mapped.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 27

7 Java Card Features

7.1 Java Card Language: a Subset of Java Language
Because of its small memory resources, the Java Card platform supports only a carefully chosen, customized subset of
the Java language’s features. This subset includes features that are well suited for writing programs for smart cards and
other small devices while preserving the object-oriented capabilities of the Java programming language. The next table
highlights some notable supported and unsupported Java language features.

Supported Java Features Unsupported Java Features

• Small primitive data types: boolean, byte,

short,
• One-dimensional arrays,

• Java packages, classes, interfaces, and
exceptions,

• Java object-oriented features: inheritance,
virtual methods, overloading and dynamic
object creation, access scope, and binding

rules,
• The int keyword and 32-bit integer data type

support are optional.
• The Garbage Collector

• Large primitive data types: long, double, float

• Characters and strings
• Multidimensional arrays

• Dynamic class loading
• Security manager
• Threads
• Object serialization

• Object cloning

Note: The Garbage Collector is optional according to the Java Card 2.2.1 specification but is mandatory according to the

TS 102 241 specification.

7.2 Backward Compatibility
The new version of the Java Card specification (revision 2.2.1) allows to run applications developed with the previous
version. In facts, Java Card version 2.1, or 2.2, applications will run on Java Card 2.2.1 products without any

modifications.
Also, an applet developed with the previous version can be converted with the JavaCard 2.2.1 converter tool.

7.3 The Java Card Runtime Environment
The Java Card™ platform, version 2.2.1 Runtime Environment contains the Java Card virtual machine (VM), the Java
Card Application Programming Interface (API) classes (and industry-specific extensions), and support services.

7.3.1 Atomicity and Transactions

To ensure that the data and the applets stored on a smart card are always defined, even after a power failure or the
card is removed during a session, the concept of atomicity and transaction was created. In the JC API

(javacard.framework.JCSystem class), developers are provided with methods that allow them to write to the memory

atomically; in other words, one memory field is fully updated before the next memory field is updated. Sessions, where

the memories are updated atomically, are called transactions. If a transaction is interrupted, all memory fields are

restored to the values set before the transaction started (rollback). Therefore, all memory field updates during a
transaction are conditional. The end of the transaction must be committed programmatically (refer to the API description

of the javacard.framework.JCSystem class), so that the updates can be definitively applied.

Interoperability Issue

Atomicity and Transactions are currently defined only for javacard memory fields and objects; SIM Alliance
members are not interoperable about the applying of such concepts also to file system operations, as it is not

explicitly required by the documentation standard.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 28

7.3.2 Security Concept and Firewalls

Since smart cards are mainly used in fields where security is very
much an issue, a special security concept was designed for Java
on smart cards. First of all, applet developers may use the same
concept of package and class visibility with which they are familiar
when using conventional Java. Additional security is ensured in

smart cards via a context firewall system. Each applet belongs to
a specific context. One or more applets may belong to the same
context. In current Java Card technology, all applets sharing the
same package are in the same context (package context). Only
the objects belonging to the context of the selected applet can be
accessed. Whenever an applet is deselected and an applet

belonging to another context is selected, the context is also
deselected and the other context becomes active (selected). The
JCRE ensures that references to objects do not cross over context

borders.
If applet developers want objects to be shared by applets, the

JCRE provides a secure sharing mechanism. Nevertheless, object
fields cannot be accessed over context borders, but an applet can

provide some object-processing methods via a public shareable
interface and thereby give other applets controlled access to its
own objects.

Figure 2 - The JCRE Context

A basic example of using a shareable interface object is as follows.

Step 1: defining a shareable interface.

package com.simalliance.serverappletpackage;

import javacard.framework.Shareable;

public interface ServerInterface extends Shareable {

public void myMethod (short myParameter);
}

Step 2: the server applet must implement the interface containing the method to be called from a client applet (in this

case, myMethod), the parameters to be processed (myParameter) and an implementation of the

getShareableInterfaceObject method (this is to override the method implementation of the

javacard.framework.applet class which returns null by default).

package com.simalliance.serverappletpackage;

import javacard.framework.*;

public class ServerApplet extends Applet implements ServerInterface {

 short myParameter;

 public void myMethod(short increment) {

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 29

 myParameter = (short) (myParameter + increment);
 }

public Shareable getShareableInterfaceObject(AID clientAID, byte anyParameter){

// anyParameter may be used to authenticate the client applet

return this;
}

}

Step 3: the client applet must retrieve the AID of the shareable interface object (sio) from the JCRE. With this, it can

call the method to obtain the sio from the server applet.

package com.simalliance.clientappletpackage;

import javacard.framework.*;
import com.simalliance.serverappletpackage;

private short thisParameter = ANY_NUMBER;
static final short SW_SERVER_APPLET_NOT_EXIST = (short) 0x6F01;

// Server AID has to be coded in the client applet or assigned in the personalisation private
byte[] server_aid_bytes = SERVER_AID_BYTES;

public class ClientApplet extends Applet {

 private void addParameterViaSio() {

// obtain the server AID object
AID server_aid = JCSystem.lookupAID(server_aid_bytes,
 (short)0,
 (byte)server_aid_bytes.length);
if (server_aid == null)

ISOException.throwIt(SW_SERVER_APPLET_NOT_EXIST);

//request sio from server applet
ServerInterface sio = (ServerInterface)

 (JCSystem.getAppletShareableInterfaceObject(server_aid,
ANY_PARAMETER));

//execute myMethod of the server applet
sio.myMethod(thisParameter);

 }
}

7.3.3 Entry Point Objects

In the idea that the security of a smartcard must have a way for non-privileged user processes to request system
services performed by privileged “system” routines, entry points objects have been defined.
These are objects owned by the JCRE context. They have been flagged as containing entry point methods. This
designation allows the methods of these objects to be invoked from any context. The request system service is
performed according to the verification of the method parameters, checked by the JCRE. The firewall restricts accesses
to these objects (detect and restrict attempts to store these objects).
These entry points objects can be divided between two categories:

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 30

• Temporary JCRE Entry Point Objects (i.e. APDU and ProactiveHandler objects)
References to these objects can only be used locally, e.g. they can not be stored by the applet in
instance and class attributes

• Permanent JCRE Entry Point Objects (i.e. AID instance and ToolkitRegistry objects)
References to these objects can be stored and freely re-used.

7.3.4 Global Arrays

Normally, the firewall would prevent objects from being used in different context. However, some objects need to be
accessible from anyone. The Java Card VM allows an object to be designed as “global”.
All global arrays are temporary global arrays objects which are owned by the JCRE context. This allows to any context to
access to these objects.

Developer tip:
An applet can not create Global arrays in a standard way as no API is defined.

7.4 The Java Card VM
A primary difference between the Java Card virtual machine (JCVM) and the Java virtual machine (JVM) is that the JCVM
is implemented as two separate pieces. The first, the on-card portion of the Java Card virtual machine, includes the Java
Card bytecode “interpreter”. The Java Card “Converter” runs on a PC or a workstation. The converter is the off-card
piece of the virtual machine. Taken together, they implement all the virtual machine functions—loading Java class files
and executing them with a particular set of semantics.
The Java Card Virtual Machine (JCVM) specification defines a subset of the Java programming language and a Java-

compatible VM for smart cards, including binary data representations, file formats, and the JCVM instruction set.
The VM for the Java Card platform is implemented on the card itself. The on-card Java Card VM interprets bytecode,
manages classes and objects, and so on. The input data for the VM are produced by an external development tool, the
Java Card Converter tool, which verifies and prepares the Java classes in a card applet for on-card execution. The
converter ensures that the classes conform to the Java Card specification. The output of the converter tool is a
Converted Applet (CAP) file, a file that contains all the classes in a Java package in a loadable, executable binary
representation.

7.4.1 Summary of Java Card Language Limitations

Language
Features

Dynamic class loading, security manager (java.lang.SecurityManager), threads, object cloning, and

certain aspects of package access control are not supported.

Keywords native, synchronized, transient, volatile, strictfp are not supported.

Types There is no support for char, double, float, and long, or for multidimensional arrays. Support for

int is optional.

Classes and
Interfaces

Some of the Java core API classes and interfaces (java.io, java.lang, java.util) are partially

supported by Java Card. However, additional classes are defined to support smart cards’ specific
features.

Exceptions Some Exception and Error subclasses are omitted because the exceptions and errors they

encapsulate cannot arise in the Java Card platform.

Summary of Java Card VM Constraints

A package can refer to up to 128 other packages

A fully qualified package name is limited to 255 bytes. Note that the character size depends on the

character encoding.

Packages

A package can have up to 255 classes.

Classes A class can directly or indirectly implement up to 15 interfaces.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 31

A package can have up to 256 static methods if it contains applets (an applet package), or 255 if it is a
library package.

A class can implement up to 128 public or protected instance methods, and up to 128 with package
visibility.

7.5 Development tools

7.5.1 Converter

The Java Card Converter takes as input all of the class files which make up a Java package. A package that contains one

or more non-abstract subclasses of the javacard.framework.Applet class is referred as an applet package. Otherwise the

package is referred as a library package. The Java Card Converter also takes as input one or more export files. An export

file contains name and link information for the contents of packages that are used in classes. When an applet or library
package is converted, the converter can also produce an export file, for that package, representing the public APIs of the

package being converted.
A Java Card CAP file contains a binary representation of a package that can be installed on a device and used to execute

the classes on a Java Card virtual machine. A CAP file is produced by a Java Card converter when a package is
converted. A CAP file consists of a set of components, each of them describes a different aspect of the content. The set
of components in a CAP file can vary, depending on whether the file contains a library or applet definition(s). (See
specification Java Card 2.2.1 for more details).
If the converter encounters any errors (i.e. any unsupported language features used in an applet are detected by the

converter), no CAP file is produced and the problem is reported in the Tasks view.
See the following “conversion process” illustration:

Figure 3 – Converting a CAP file

Concerning the converter, it is recommended to use the one included in CJDK 2.2.1. The version of this converter is 1.3.

7.5.2 Verifier

The verifier is a powerful tool that performs security checks to the CAP file. Actually, the converter checks only if the
Java files are compatible with the Java Card language limitations; the verifier enforces security verifying the CAP file
structure and that operations are well typed to avoid reference forgery. The set of conformances checks guarantees that
such files do not attempt to compromise the integrity of a Java Card virtual machine and hence other applets.

7.6 The Java Card API
In addition to its subset of the Java core classes the Java Card Framework defines its own set of core classes specifically
to support Java Card applications. These are contained in the following packages:
java.io

java.io defines one exception class, the base IOException class, to complete the RMI exception hierarchy.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 32

Exceptions IOException: A Java Card runtime environment-owned instance of IOException is thrown to signal
that an I/O exception of some sort has occurred.

java.lang

Java.lang defines Object and Throwable classes. It also defines a number of exception classes: the

Exception base class, various runtime exceptions, and CardException.

Object: Class Object is the root of the Java Card platform class hierarchy. Classes

Throwable: The Throwable class is the superclass of all errors and exceptions in the Java Card
platform’s subset of the Java programming language.

ArithmeticException: A Java Card runtime environment-owned instance of

ArithmeticException is thrown when an exceptional arithmetic condition has occurred.

ArrayIndexOutOfBoundsException: A Java Card runtime environment-owned instance of

ArrayIndexOutOfBoundsException is thrown to indicate that an array has been accessed with an
illegal index.

ArrayStoreException: A Java Card runtime environment-owned instance of

ArrayStoreException is thrown to indicate that an attempt has been made to store the wrong type
of object into an array of objects.

ClassCastException: A Java Card runtime environment-owned instance of

ClassCastException is thrown to indicate that the code has attempted to cast an object to a
subclass of which it is not an instance.

Exception: The class Exception and its subclasses are a form of Throwable that indicate
conditions that a reasonable applet might want to catch.

IndexOutOfBoundsException: A Java Card runtime environment-owned instance of

IndexOutOfBoundsException is thrown to indicate that an index of some sort (such as an array) is
out of range.

NegativeArraySizeException: A Java Card runtime environment-owned instance of

NegativeArraySizeException is thrown if an applet tries to create an array with negative size.

NullPointerException: A Java Card runtime environment-owned instance of

NullPointerException is thrown when an applet attempts to use null in a case where an object is
required.

RuntimeException: It is the superclass of those exceptions that can be thrown during the normal
operation of the Java Card Virtual Machine.

Exceptions

SecurityException: A Java Card runtime environment-owned instance of SecurityException
is thrown by the Java Card Virtual Machine to indicate a security violation.

javacard.framework

javacard.framework defines the interfaces, classes, and exceptions that compose the core Java Card Framework.

It defines important concepts such as the Application Protocol Data Unit (APDU), the Java Card applet (Applet), the

Java Card System (JCSystem), the Personal Identification Number (PIN), and a utility class. It also defines various
ISO7816 constants and various Java Card-specific exceptions.

ISO7816: defines constants related to ISO 7816-3 and ISO 7816-4.

MultiSelectable: identifies applets that can support concurrent selections.

Interfaces

PIN: represents a personal identification number used for security (authentication) purposes.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 33

 Shareable: identifies a shared object. Objects that must be available through the applet firewall must

implement this interface.

AID: defines an ISO7816-5-conforming Application Identifier associated with an application provider; a

mandatory attribute of an applet.

APDU: defines an ISO7816-4-conforming Application Protocol Data Unit, which is the communication

format used between the applet (on-card) and the host application (off-card).

Applet: defines a Java Card application. All applets must extend this abstract class.

JCSystem: provides methods to control the applet life-cycle, resource and transaction management,
and inter-applet object sharing and object deletion.

OwnerPIN: is an implementation of the PIN interface.

Classes

Util: provides utility methods for manipulation of arrays and shorts, including arrayCompare(),
arrayCopy(), arrayCopyNonAtomic(), arrayFillNonAtomic(), getShort(),

makeShort(), setShort().

Exceptions
Various Java Card VM exception classes are defined: APDUException, CardException,
CardRuntimeException, ISOException, PINException, SystemException,

Developer tip:

The OwnerPIN class can be used by Java Card applets to define additional PINs but it does not offer interface
to handle PINs defined by network access applications.

javacard.framework.service

javacard.framework.service defines the interfaces, classes, and exceptions for services, including RMI
services.

Service: defines the methods processCommand(), processDataIn(), and

processDataOut().

RemoteService: is a generic Service that gives remote processes access to services on the card.

Interfaces

SecurityService: extends the Service base interface, and provides methods to query the

current security status, including isAuthenticated(), isChannelSecure(), and

isCommandSecure().

BasicService: is a default implementation of a Service; it provides helper methods to handle
APDUs and service collaboration.

Classes

Dispatcher: maintains a registry of services. Use a dispatcher if you want to delegate the processing

of an APDU to several services. A dispatcher can process an APDU completely with the process()

method, or dispatch it for processing by several services with the dispatch() method.

CardRemoteObject: base class to enable or disable remote access to an object from outside the
card.

RMIService: this class extends BasicService and implements RemoteService to process RMI
requests

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 34

javacard.security

javacard.security defines the classes and interfaces for the Java Card security framework. The Java Card
specification defines a robust security API that includes various types of private and public keys and algorithms, methods

to compute cyclic redundancy checks (CRCs), message digests, and signatures:

Interfaces Generic base interfaces Key, PrivateKey, PublicKey, and SecretKey, and subinterfaces

that represent various types of security keys and algorithms: AESKey, DESKey, DSAKey,
DSAPrivateKey, DSAPublicKey, ECKey, ECPrivateKey, ECPublicKey,
RSAPrivateCrtKey, RSAPrivateKey, RSAPublicKey

Checksum: abstract base class for CRC algorithms

KeyAgreement: base class for key-agreement algorithms

KeyBuilder: key-object factory

KeyPair: a container to hold a pair of keys, one private, one public

MessageDigest: base class for hashing algorithms

RandomData: base class for random-number generators

Classes

Signature: base abstract class for signature algorithms

Exceptions CryptoException: encryption-related exceptions such as unsupported algorithm or un-initialized
key.

Developer Tips:

Not every algorithm is supported by each card (RSA, Elliptic Curves…).

If an unsupported algorithm is used, a CryptoException with the specific reason: NO_SUCH_ALGORITHM
is thrown.

javacardx.crypto

This extension package that defines the interface KeyEncryption and the class Cipher, each in its own package
for easier export control.

Interfaces KeyEncryption: Generic bas interface used to decrypt an input key used by encryption algorithms

Classes Cipher: base abstract class that all ciphers must implement

java.rmi

java.rmi defines the Remote interface and the RemoteException class.

Interfaces Remote: The Remote interface serves to identify interfaces whose methods may be invoked from a CAD
client application.

Exceptions RemoteException: A Java Card runtime environment-owned instance of RemoteException is
thrown to indicate that a communication-related exception has occurred during the execution of a remote
method call.

7.7 New JC 2.2.1 Features
The version 2.2.1 of the Java Card specification provides to developers and smart cards issuers the same benefits that

the Java Card 2.1.1 specification brought with these following improvements:

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 35

• Improved memory management - Enables issuers to optimize use of memory space on a smart card. For
example, mechanisms of Applet, Package and Object Deletion have been updated.

• Logical Channels support - Provides multiple concurrent access to more sophisticate and interoperable services.

• Easier design and development of applications - Java Card Remote Method Invocation allows developers to
design applications more easily by enabling the use of Java technology for both the card and terminal.

• State of the art cryptographic engines - Provides more security options by supporting additional cryptographic
algorithms AES and Elliptic Curve.

7.7.1 Logical Channels

Logical channels allow to a terminal to open up to four channels into the smart card (Java Card 2.2.1 platforms). This
mechanism creates the ability to have different session on different logical channel (see ISO7816-4 for logical channels

functionality).
Only one logical channel, logical channel 0 (the basic logical channel), is active on card reset. A MANAGE CHANNEL

APDU command may be issued on this logical channel to instruct the card to open a new logical channel.
Legacy applets (written for version 2.1 of the Java Card platform), running on version 2.2.1, still work correctly, they do

not need to take care about logical channel support.
Since Java Card 2.2, the javacard.framework.MultiSelectable interface is implemented. Multiselectable
applets can be selected on multiple logical channels at the same time. They can also accept other applets belonging to
the same package being selected simultaneously.

Multiselectable applets shall implement the MultiSelectable interface. In case of multiselection, the Java Card RE

will inform the applet instance by invoking methods MultiSelectable.select() and

MultiSelectable.deselect() during selection and deselection respectively.

The Java Card RE guarantees that an applet, not implementing the Multiselectable Interface, is not selected
more than once or concurrently with another applet from the same package.
A new method (“isAppletActive(AID)”)indicates whether a specified applet is active on a logical channel.
SIMAlliance members guarantee that it is possible to configure 4 logical channels (depending on the card configuration).

Developer Tips

Transient objects, CLEAR_ON_DESELECT type, can be shared between two applets from the same packages even
though they are selected on two different channels.

7.7.2 Applet and Package deletion

To prevent deletion of applications whose functionalities are referenced by other applications, new rules concerning
applets and packages deletion are defined:

An applet can NOT be deleted by the JCRE if:

• an object of this applet is referenced in an other applet,
• an object of this applet is referenced in the static field of any package.

In any of the previous cases, deletions are aborted.

In order to prevent inter-blocking problems, it is also possible to delete a package and all the applets inside.(Group
Deletion).

When a deletion is requested, the Applet Deletion Manager informs each applets which are being deleted by invoking, if

implemented, the applet’s uninstall() (javacard.framework.AppletEvent.uninstall()) method;

deletion checks are performed after the uninstall() method invocation.

When multiple applets are being deleted, the order of invocation of the uninstall() methods is unspecified.
After an applet deletion, it will not be possible to select any of the deleted applets, and no object owned by the deleted
applets can be accessed by any other applet (present or future applets).
Resources used by the applet instances are recovered for re-use. Also, the AID of the deleted applet instances may be
re-assigned to new applets instances.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 36

Developer tip:

The uninstall() method can be used to un-reference objects in static fields, to be sure that that the applet
can be deleted.

7.7.3 Java Card Remote Method Invocation (JCRMI)

General description

JCRMI can be viewed as a second model of communication. It relies on a subset of the J2SE RMI distributed object
model.
In one hand, a server application creates and makes accessible remote objects. In another hand, a client application will
request to obtain a reference (16-bit unsigned number which identifies a unique remote object on the card). If the
request is accepted by the server, depending on its rules, the client will be able to invoke remote methods on those
remote objects.

In this model, the Java Card applet is the server and the host application (in the terminal) is the client.
The client application handles communication among the user, the Java Card applet, and the provider's back-end

application. The host program accesses the services provided by the sever applet. It resides on a terminal or card
acceptance device such as a mobile phone.

JCRMI is provided in the extension package javacardx.rmi by the class RMIService. JCRMI messages are

encapsulated within the APDU object passed to the RMIService methods. In other words, JCRMI provides a
distributed-object model mechanism on top of the APDU-based messaging model, by which the server and the client
communicate, passing method information, arguments, and return values back.

Compared to an applet “using APDU”, the Java Card applet does not have to analyze the APDU buffer. In the JCRMI
model, APDUs are formatted by the RMI services that directly invoke the addressed methods of the server applet by
using Global Array for this buffer. A unique ID (stub) is assigned to the “remote methods”, during the compilation.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 37

Figure 4 – RMI communications

Remote Objects
A remote object is described by one or more remote interfaces. A remote interface is defined as an interface that

extends the interface java.rmi.Remote. The methods of a remote interface are referred to as remote methods. Moreover,

it is needed to include, in the declaration of the remote method, the java.rmi.RemoteException in its “throws” clause.

Description of the mechanism

The JC RMI communication is based on two commands.

Applet Selection:
First, it is needed to get the initial object reference from the server applet through the SELECT FILE command (see ISO

7816-4). The answer to this command is a constructed TLV that include:

• The INS byte which is going to be used for the next commands (invocation).

• The remote object identifier and information to identify the associated class.

Developer tip:
The command needs to have the following options:
• Direct Selection by DF name, also used to select an applet by its AID

• Return File Control Information (FCI): this option is used to retrieve FCI information from the applet.

Method Invocation:
Concerning the second step, it consists to invoke a remote method. For example, the client application (CAD application)

wants to retrieve some information. It is needed to provide some parameters:
• The INS byte: it has been sent by the server in the “Select Answer”.

• The remote object identifier: it is the reference on the remote object that has been sent, by the smart card,
during the applet selection.

• The invoked method identifier: it permits to retrieve which remote methods is to be execute.
• The parameters’ values of the remote method: it is needed to indicate the length of the argument followed by

its value (seems to be in the same order).
The server answers by returning the retrieved information (value, arrays …). The return values are always followed by a
good completion status code “0x9000”. In case an error occurs, the remote method throws an exception.

Allocation of incoming objects

As a consequence that in the INVOKE command it is possible to transmit arrays, array objects need to be allocated in
the server part (smart card part). Global arrays must be used for this particular type of parameter. These arrays are

temporary objects and they cannot be stored in any object and they can be accessed from all contexts as they are
owned by the JCRE.

Functional limitation
• Parameters of a remote method must be any supported data types or any single dimension array of

supported data types.
• Returned values of a remote method must only be one of the following type:

• Any supported data type or any single dimension array of supported data type (transmitted

by value)
• A void return

• Any remote interface (transmitted by reference using a remote object reference descriptor)
• CAD remote objects can not be passed as arguments to remote methods

• Applets can not invoke remote methods on the CAD client
• Method argument data and returned values must not be higher than the size constraint of an APDU.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 38

Realization of the client stub

This is a mandatory step. When the server part has been developed, it is needed to assign a unique identifier to each
remote class present in the applet. This is done by the “rmic” tool provided in the Development Kit. The command is the
based on the following example:

“rmic -v1.2 -classpath path -d output_dir class_name”
where:

• -v1.2 is a flag required by the Java Card RMI client framework.

• -classpath path identifies the path to the remote class.

• output_dir is the directory in which to place the resulting stubs.

• class_name is the name of the remote class.

The JCRMI Client API is defined in the following packages:

• com.sun.javacard.javax.smartcard.rmiclient contains the core JCRMI Client API. It
defines:

• The CardAccessor interface that JCRMI stubs use to access the smart card.

• The CardObjectFactory class that is the base class for JCRMI-stub generation
implementations. An instance of this class is associated with one Java Card applet selection
session.

• The JavaCardRMIConnect class that is used by the client application to initialize a
JCRMI session, and obtain an initial remote reference.

• A number of Java Card exception subclasses, such as APDUExceptionSubclass,
CardExceptionSubclass, CardRuntimeExceptionSubclass,
CryptoExceptionSubclass, ISOExceptionSubclass,
PINExceptionSubclass, PINException, ServiceExceptionSubclass,
SystemExceptionSubclass, TransactionExceptionSubclass, and
UserExceptionSubclass.

• javacard.framework defines a number of Java Card exceptions that can be re-thrown on the

client: APDUException, CardException, CardRuntimeException,
ISOException, PINException, SystemException, TransactionException,
and UserException.

• javacard.framework.service defines the ServiceException, which represents an
exception related to the service framework.

7.8 Managing Memory and Objects
On a Java Card device, memory is the most valuable resource. A garbage collector is present on Rel6 cards. When an
object is created, the object and its contents are preserved in non-volatile memory, making it available across sessions.

In some cases application data doesn't need to be persistent - it is transient.

Developer Tip:
For frequently updated data it is recommended to use transient. It is possible to check the available memory

through the method: JCSystem.getAvailableMemory(). Remember that transient memory is a limited
resource.

As defined previously, two kinds of objects are present for smart cards:

Persistent objects:

All objects registered or referenced from a static field become persistent. They are saved in a non-volatile
memory area, such as EEPROM. They are not deleted after a power down or reset, and can be accessed,

provided that they have a valid reference.

Transient objects:
The Java Card technology does not support the transient keyword. Instead the Java Card API

(javacard.framework.JCSystem) defines four methods that allow you to create transient data at runtime,

and a fifth that lets you check whether an object is transient:

• static byte[] makeTransientByteArray(short length, byte
event),

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 39

• static byte[] makeTransientBooleanArray(short length,
byte event),

• static Object makeTransientObjectArray(short length,
byte event),

• static short[] makeTransientShortArray(short length,
byte event),

• static byte isTransient(java.lang.Object theObj).

A transient array of primitive data types or Object’s references can be created. A transient array exists as long as
references to it remain.

The contents of a transient array get reset to the field's default value (zero, false, or null) when an event

such as a card reset or applet deselection occurs depending on the transient type (CLEAR_ON_RESET and

CLEAR_ON_DESELECT).

Developer Tips
For toolkit applets, the use of COD is prohibited.

In a Java Card environment, arrays and primitive types should be declared at object declaration, and you should
minimize object instantiation in favor of object reuse. Instantiate objects only once during the applet lifetime. It is

recommended to allocate memory in the install() method as it is invoked only once and the applet is ensured
that all the reserved memory is available for all the applet lifetime.
In order to avoid resource wasting, a global array has been defined as a buffer that can be used by any applet

(see uicc.system).

7.8.1 Garbage collector:

The garbage collector is a mechanism that retrieves every unreferenced object on the card and removes them. In Java

Card, this service is triggered by the invocation of a method JCSystem.requestObjectDeletion().

7.9 Java Card Technology Compatibility Kit
The Java Card Technology Compatibility Kit (JC TCK) is a test suite provided by Sun. It has been created to prove that a
card is compliant with the current release of Java Card 2.2.1. Tests are grouped in three main packages: the API(s), the
JCRE and the JCVM. They guarantee that cards had passed the most current tests. The actual release for those tests is

2.2.1.
For example, those tests concern cast of variables, exceptions (arithmetic, out-of-bounds…), APDU, PIN, Transactions,
the crypto verification (not mandatory)…

7.10 Overview of Versions needed for basic interoperability
• JCVM Specification 2.2.1
• JCRE Specification 2.2.1

• JC API Specification 2.2.1
• Sun Cap File Converter 1.3 (CJDK 2.2.1)

• Sun CJDK 2.2.1
• Sun JDK 1.4.1

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 40

8 Card Application Toolkit (CAT) - USIM Application Toolkit
(USAT)

8.1 Scope
This chapter describes the Card Application Toolkit (CAT) defined in the ETSI TS 102 223 and the USIM Application
Toolkit (USAT) defined in the 3GPP TS 31.111.

The Card Application Toolkit (CAT) is a set of generic commands and procedures which allow applications, existing in the
UICC, to interact and operate with the Mobile Equipment (ME).

The USIM Application Toolkit (USAT) procedures described in the 3GPP TS 31.111 are available when the current

Network Access Application (NAA) is the USIM.

8.2 CAT commands
The CAT procedures are based on the following commands defined in the ETSI TS 102 221.

• TERMINAL_PROFILE
This command is used by the terminal to transmit its CAT capabilities to the applications present on the UICC, let
say the USIM in our case.
• ENVELOPE

This command is used to transfer CAT information from the terminal to the USIM.
• FETCH

The terminal uses this command to retrieve a proactive command from the UICC (e.g. from the CAT Runtime
Environment or from a CAT application).
• TERMINAL_RESPONSE

This command is used by the terminal or UE to send the response for a previously fetched proactive command (e.g.
a CAT command).

The card uses the status word ‘91xx’ to indicate that a proactive command is pending. The terminal uses the command
FETCH to get the pending proactive command. The terminal sends the response of the proactive command execution
with the command TERMINAL RESPONSE. If the card has no other pending proactive command, it sends the status word
‘9000’ after the TERMINAL RESPONSE to close the proactive session.

The details of the structure and the coding in the data part of the commands TERMINAL_PROFILE, ENVELOPE and

TERMINAL_RESPONSE are defined in the ETSI TS 102 223. The proactive commands are also defined in the ETSI TS
102 223. The extension relative to the USIM available when current Network Access Application (NAA) is the USIM are

defined in the 3GPP TS 31.111.

8.3 What is a CAT session?
A CAT session starts with the TERMINAL PPROFILE and ends with the reset or deactivation of the card.

At the beginning of a CAT session, the card performs the following actions:

• It triggers any applet registered to the TERMINAL PROFILE event

• It sends a SET UP MENU system proactive command, if at least one menu entry is registered and enabled by a
selectable Toolkit Applet. Thus, the card supplies a list of items to be incorporated into the UE's menu structure

• It sends a SET UP EVENT LIST system proactive command, if at least one of the EVENT_EVENT_DOWNLOAD_*
events is registered by a selectable Toolkit Applet. Thus the card supplies a list of events which it wants the UE
to provide details of when these events happen

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 41

• It sends a POLL INTERVAL system proactive command, if at least one Toolkit Applet has requested poll interval
duration. The card requests with this command the terminal to adjust the time between the STATUS commands

sent to the card by the terminal during idle mode.

This is done by the CAT Runtime Environment using the system proactive commands SET UP MENU, SET UP EVENT LIST
and POLL INTERVAL. The list depends on the requirements of the toolkit applets installed on the card.

During a CAT session the card shall inform the ME and send the system proactive commands SET UP MENU, SET UP
EVENT LIST, POLL INTERVAL and POLLING OFF when a change occurs (e.g. change in the menu list, change of the
menu title - an update of the content of EFSUME, change in the event list, change in the polling interval).

8.4 What is a proactive session?
A proactive session enables the card to access resources of the UE by sending commands. A proactive session allows
toolkit applications in the card to interact and operate with any UE supporting this feature. For this purpose, a toolkit
application shall use the (U)SIM or UICC API.

A proactive session is a sequence of related CAT commands and responses which starts with the status response '91xx'

(proactive command pending) and ends with a status response of '90 00' (normal ending of command) after Terminal
Response.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 42

9 (U)SIM and UICC API description

9.1 Scope
This chapter describes the UICC Application Programming Interface and the (U)SIM Application Programming Interface
available on a (U)SIM card. It also describes the corresponding Runtime Environment.

The UICC API and the CAT Runtime Environment extends the “Java Card™ 2.2.1 API” and the "Java Card™ 2.2.1
Runtime Environment" (JCRE) to allow an application to get access to the functions and data available on a UICC
platform as described in ETSI TS 102 221 and ETSI TS 102 223. By this way an application can access the UICC shared

file system and the ADF file system or interact with the user equipment by using the toolkit features.

The (U)SIM API and its USAT Runtime Environment is an extension of the UICC API and of the CAT Runtime
Environment to manage the characteristics of the USAT defined in the 3GPP TS 31.111 or to manage the characteristics

of the USIM defined in the 3GPP TS 31.102.

The UICC API is composed of 4 packages: uicc.system, uicc.toolkit, uicc.access and

uicc.access.fileadministration.

The (U)SIM API is composed of 2 packages: uicc.usim.toolkit and uicc.usim.access.

The (U)SIM toolkit API consists of the uicc.usim.toolkit package for toolkit features enabling 3GPP TS 31.111
and 3GPP TS 51.014 features.

A (U)SIM Application Toolkit is a Toolkit Applet registered in (U)SIM Toolkit Runtime Environment.

Network Access Application specific events are available for this type of Toolkit Applet. Corresponding constants are

described in uicc.usim.toolkit.ToolkitConstants interface.

The USAT Toolkit Applet is able to communicate with the terminal by using the Proactive-,

ProactiveResponse-, Envelope- and EnvelopeResponseHandler located in the uicc.toolkit
package as the SIM Toolkit Applets. But there are additional features a USAT Toolkit Applet can handle compared to a
SIM Toolkit Applet.

9.2 Toolkit API and CAT Runtime Environment

9.2.1 The CAT Runtime Environment

The CAT Runtime Environment is an addition to the Java Card Runtime Environment (JCRE) in order to manage the
toolkit applets.
It is composed of the Toolkit Registry, the Toolkit Handlers and the Triggering Entity.

The Toolkit Registry handles all the registration status of the toolkit applets.
The Toolkit Handlers handle the communication between terminal and the Toolkit Applet.
The Triggering Entity handles the Toolkit Applet triggering upon reception of some APDU commands sent by the
terminal.

9.2.2 Toolkit applet

9.2.2.1 What is a toolkit applet?

A toolkit applet is a Java Card applet with the following additional capabilities:

• It provides an additional entry point: the processToolkit() method

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 43

• It may register to some toolkit events such as the menu selection or the reception of a SMS. When such an

event occurs the CAT Runtime Environment triggers the applet through its processToolkit() method.
• When triggered, it may request the CAT Runtime Environment to send a proactive command and analyze the

mobile response.

In fact a toolkit applet derives from javacard.framework.Applet and provides the same entry points. But it also

provides an object implementing the uicc.toolkit.ToolkitInterface interface. This object shall implement

the method processToolkit(). This method is called by the Triggering Entity of the CAT Runtime Environment to
process the current event if the applet is register on this event.

This object might be the applet itself or another object owned by the applet.

9.2.2.2 Toolkit applet installation and registration

The loading and the installation of a toolkit applet as well as its life cycle complies with the ETSI TS 102 226 and does
not differ from a java card applet with the exception that

• the installation command shall include toolkit parameters as specified in the ETSI TS 102 226 (“UICC Toolkit
Application specific parameters” field) to initialize the toolkit registry of this applet

• the applet shall first register to the JCRE as defined in the "Java Card™ 2.2.1 Runtime Environment (JCRE)

Specification" by calling one of the Applet.register() methods. Then it shall register to the CAT Runtime

Environment by calling the ToolkitRegistrySystem.getEntry() method and it gets a reference to

its registry entry (object implementing the ToolkitRegistry interface).

Developer tips

The ToolkitRegistrySystem.getEntry() method has to be invoked after the invocation of the

Applet.register() method. Usually the invocation of the installation method includes the invocation of the

register() method, the invocation of the ToolkitRegistrySystem.getEntry() method and then the
toolkit registry configuration (menu creation and configuration, event registration).

The applet installation is considered successful when the call to register() completes without any exception.

The installation is considered unsuccessful if an exception is thrown prior to the call to a register() method, or if

the call to the register() method results in an exception. If the installation is unsuccessful, the Java Card Runtime
Environment performs all the necessary clean up to reclaim all the allocated resources. So it is recommended to allocate

all the resources such as objects and arrays allocation before calling the register() method. But the toolkit registry

entry has to be retrieved after the register() method so the toolkit resources are reclaimed only when the applet is
explicitly deleted using a DELETE command.

Once installed and registered to the Toolkit Registry, the toolkit applet can register to the different toolkit events and
manage its menu entries if any. The Toolkit Registry updates are available during all the applet life time and are not

affected by the current applet life cycle state (selectable or not). All the methods relative to the Toolkit Registry

updates are available in the ToolkitRegistry interface.

(U)SAT applet template
package example;

import uicc.toolkit.* ;
import uicc.access.* ;

import javacard.framework.*;

/**
 * 102 241 Toolkit Applet Example

 */
public class AppletExample extends javacard.framework.Applet implements ToolkitInterface, ToolkitConstants {

 /**
 * Toolkit Registry object.

 */
 public ToolkitRegistry toolkitRegistry ;

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 44

 private byte[] menuEntry = {(byte)'1',(byte)'0',(byte)'2',(byte)' ',(byte)'2',(byte)'4',(byte)'1',(byte)'
',(byte)'A',(byte)'p',(byte)'p',(byte)'l',(byte)'e',(byte)'t'};

 private byte itemId;

 /**
 * Applet constructor

 */
 public AppletExample () {

 // Register to the JCRE
 register() ;

 // Retrieve the Toolkit Registry object
 toolkitRegistry = ToolkitRegistrySystem.getEntry();

 // Create a menu

 itemId = toolkitRegistry.initMenuEntry(menuEntry, (short)0, (short)menuEntry.length, (byte)0, false,
(byte)0, (short)0) ;
 }

 /**
 * Method called by the JCRE at the installation of the applet
 */
 public static void install(byte bArray[], short bOffset, byte bLength) {

 AppletExample thisApplet = new AppletExample();
 }

 public Shareable getShareableInterfaceObject(AID aid, byte p) {

 if (aid == null && p == (byte)1) {
 return this ;

 }
 return null ;
 }

 /**

 * Called by the JCRE to process an incoming APDU command. An applet is
 * expected to perform the action requested and return response data if
 * any to the terminal.<p>
 */
 public void process(APDU apdu) throws ISOException
 {
 }

 /**

 * Method called by the CAT Runtime Environment.
 */

 public void processToolkit (short event) {

 // process Toolkit events
 switch (event)
 {

 ...
 }

 }
}

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 45

9.2.2.3 Toolkit applet triggering

When receiving an incoming APDU a Translator converts it into the corresponding Event. The Triggering Entity asks the
Toolkit Registry which toolkit applets are registered to this Event and then triggers all registered Toolkit applets by

calling the processToolkit() method of the ToolkitInterface Object. A toolkit applet is only triggered if it
is in the selectable state.

The difference between a Java Card applet and a toolkit applet is that the toolkit applet does not handle APDUs directly,

the select() method is also not launched since the toolkit applet itself is not selected.

Developer tip

As a consequence a toolkit applet can not use the Transient CLEAR_ON_DESELECT objects defined in Java Card™
2.2.1 Runtime Environment (JCRE) Specification".

In fact, the CAT Runtime Environment uses the shareable interface feature specified in "Java Card™ 2.2.1 Runtime

Environment (JCRE) Specification" as the processToolkit() method is a method of the ToolkitInterface
shareable interface object provided by the toolkit applet:

• The CAT Runtime Environment invokes the getShareableInterfaceObject() method of the toolkit

applet to retrieve the reference of its ToolkitInterface object. This method is invoked before the first

triggering of the toolkit applet. The AID parameter of the getShareableInterfaceObject() method is

set to null. The byte parameter of the getShareableInterfaceObject() method is set to one (i.e.
"01").

• The CAT Runtime Environment invokes the processToolkit() method of the ToolkitInterface
object to trigger the toolkit applet. As a consequence all the rules defined in the "Java Card™ 2.2.1 Runtime

Environment (JCRE) Specification" apply: the JCRE performs a context switch, etc.

Example:

/**
 * Process toolkit events.
 */

public void processToolkit(short event) throws ToolkitException
{

 if (event == EVENT_MENU_SELECTION)
 {

 // put the applet behavior on menu selection
 }

}

When triggered, a toolkit applet can get details about the event by using the EnvelopeHandler if available. It can request
the CAT Runtime Environment to send several proactive commands using the ProactiveHandler if available and then
analyze the response of the UE (TERMINAL RESPONSE) by using the ProactiveResponse Handler.
For some specific events the EnvelopeResponseHandler is also available to transmit the response of the applet to the
command sent by the terminal (e.g. Envelope).

The handler availability for the different events is defined in the ETSI TS 102 241 and the 3GPP TS 31.130 specification.

9.2.2.4 Multi-triggering

Depending on the event there might be more than one applet registered. The CAT Runtime Environment triggers the
different toolkit applets consecutively according to their priority level assigned at the installation time (see the priority

level parameter in the “UICC Toolkit application specific parameters” field of the install (for install) command). If several
toolkit applets have the same priority level, the applets are triggered according to their installation time (i.e. the last
installed if triggered first).

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 46

9.2.2.5 Re-entrance

Re-entrance refers to the case whereby a proactive session (initiated by an APPLICATION A) execution is interrupted,
and a second APPLICATION B (which can be the same one) is triggered. The application A is then in a suspended
mode, and the nested APPLICATION B (in other words, the application triggered while another application is suspended)
has its own file and access conditions context.
After APPLICATION B has been finished, and no additional event occurs before the terminal response is received, control
is returned to the first application, so that its own execution can be finished.

Interoperable re-entrancy is supported at least for the following events:

• EVENT_CALL_CONTROL
• EVENT_SMS_MO_CONTROL
• EVENT_STATUS_COMMAND
• EVENT_PROFILE_DOWNLOAD.

Even if only four re-entrant events are supported by all SIM Alliance members’ cards, all members guarantee that no
data is lost from a card point of view.

All SIM Alliance members agree that the re-entrance list is highly configurable depending on customers need.

System handler availability:
SIM Alliance member guaranty at least than one system handler is available.
We strongly recommend applet developer to verify the handler availability with exception mechanism.

As a consequence, the ProactiveHandler may be not available for applets triggered in re-entrance; to overcome
this issue, i.e. to perform proactive commands, the re-entrance applet may register itself to the

EVENT_PROACTIVE_HANDLER_AVAILABLE in order to be triggered again when the proactive handler is available.
The applet shall save the content of the EnvelopeHandler if needed as it will not be available when triggered on the
EVENT_PROACTIVE_HANDLER_AVAILABLE.

9.2.2.6 Exception handling
All exceptions thrown by the application are caught by the CAT Runtime Environment. The exceptions are not

propagated to the terminal except if the applet is the only one triggered by the current processed event and the

exception is an ISOException with the reason code REPLY_BUSY (0x9300).

But the ETSI TS 102 241 recommends to use an ISOException with reason code 0x9300 only for events where reply
busy is allowed as defined in the ETSI TS 102 241 and 3GPP TS 31.130.

9.3 Terminal Profile
Upon reception of a TERMINAL PROFILE APDU command, the CAT Runtime Environment stores the terminal profile. The
content of the Terminal Profile is defined in the ETSI TS 102 223 and TS 31.111 specifications.
A toolkit applet can check the mobile facilities using the different methods defined in the

uicc.toolkit.TerminalProfile class.

9.4 Envelope management

9.4.1 Envelope management

When triggered, a toolkit applet can use the EnvelopeHandler to get details about the event. The EnvelopeHandler is

available for all the events except EVENT_STATUS_COMMAND, EVENT_PROFILE_DOWNLOAD,
EVENT_PROACTIVE_HANDLER_AVAILABLE and EVENT_FIRST_COMMAND_AFTER_ATR.

The EnvelopeHandler contains the list of the simple TLV data objects as sent by the terminal in the ENVELOPE APDU
command or is set by the CAT Runtime Environment itself if the event is not generated by an ENVELOPE command (for
example, for the EVENT_EXTERNAL_FILE_UPDATE or EVENT_FORMATTED_SMS_PP_UPD events) .

The detail on the different TLV data objects is given in the chapters relative to the ENVELOPE commands and
COMPREHENSION_TLV data objects of the ETSI TS 102 223 and the 3GPP TS 31.111 specifications when corresponding

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 47

to an ENVELOPE APDU command sent by the terminal. Otherwise the content of the EnvelopeHandler is described in the
ETSI TS 102 241 and the 3GPP TS 31.130 specifications in the chapter relative to the event description.

The toolkit applet retrieves the EnvelopeHandler by using the uicc.toolkit.

EnvelopeHandlerSystem.getTheHandler() method.

For toolkit applets using the (U)SIM API, the USATEnvelopeHandler is also available. The

USATEnvelopeHandler is mainly useful when managing the events relative to the SMS_PP and SMS_CB. It
provides additional methods to handle the different fields of the SMS message or Cell Broadcast message: methods to
get the length, offset and content of the message.

The toolkit applet retrieves the USATEnvelopeHandler by using the uicc.usim.toolkit.

USATEnvelopeHandlerSystem.getTheHandler() method

The EnvelopeHandler and the USATEnvelopeHandler are two distinct object instances but their content (TLV

data objects) is exactly the same. The USATEnvelopeHandler availability is the same as the EnvelopeHandler
including all the events defined in the TS 102 241 specification. For example the Toolkit Applet can use the

USATEnvelopeHandler also for the event EVENT_EXTERNAL_FILE_UPDATE.

The toolkit applet can post a response to some specific ENVELOPE commands by using the EnvelopeResponse

Handler. The EnvelopeResponseHandler is available only for the following events:

EVENT_FORMATTED_SMS_PP_ENV, EVENT_UNFORMATTED_SMS_PP_ENV, EVENT_CALL_CONTROL_BY_NAA,

EVENT_MO_SHORT_MESSAGE_CONTROL_BY_NAA and EVENT_UNRECOGNIZED_ENVELOPE.

The toolkit applet retrieves the EnvelopeResponseHandler by using the

EnvelopeResponseHandlerSystem.getTheHandler() method. If the handler is not available, a

ToolkitException with the reason code HANDLER_NOT_AVAILABLE is thrown.

The toolkit applet fills the EnvelopeResponseHandler and then posts the response by using the

EnvelopeResponseHandler.post() or the EnvelopeResponseHandler.postAsBERTLV() method.
The applet can continue its processing after the call to one of these methods.

9.4.2 EnvelopeResponseHandler management for the
EVENT_FORMATTED_SMS_PP_ENV event

The Toolkit applet fills the EnvelopeResponseHandler by using the methods inherited from the EditHandler.

Then, the applet posts the response using the EnvelopeResponseHandler.post(value) method, value is a
Boolean. When the PoR is sent using the SMS_DELIVER_REPORT mechanism, the value is used to indicate if the PoR is
sent in a RP-ACK message (value set to true) or if the PoR is sent using a RP-ERROR (value set to false).
When the PoR is sent using the SMS_SUBMIT mechanism, the value is not used.
The content of the EnvelopeResponseHandler is used to set the applet response to the OTA request. It is
inserted by the CAT Runtime Environment in the Additional Response Data of the PoR according to the TS 31.115. This
content will be transmitted back to the OTA server.

9.4.3 EnvelopeResponseHandler management for the events
EVENT_CALL_CONTROL_BY_NAA or EVENT_MO_SHORT_MESSAGE_
CONTROL_BY_NAA_SMS_PP_ENV

The Toolkit Applet uses the EnvelopeResponseHandler to set the response to the ENVELOPE (CALL CONTROL) APDU

command or to the ENVELOPE (MO_SHORT_MESSAGE_CONTROL) APDU command.
The Toolkit Applet may fill the EnvelopeResponseHandler by using the method inherited from the EditHandler to define
the content of the different data object (Address, etc). See the structure of the ENVELOPE response defined in the 3GPP
TS 31.111.

Then, the applet posts the response by using the EnvelopeResponseHandler.postAsBERTLV(value,

tag) method. The value is ignored by the CAT Runtime Environment. The tag shall be set according to the applet
response “00” for “Allowed, no modification”, “01” for “Not allowed” and “03” for “Allowed with modifications”. The CAT
Runtime Environment uses the tag as the Call control result or the MO short message control result of the response.

Developer tip

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 48

The CAT Runtime Environment sends the response to the ENVELOPE before the emission of the next proactive
command or when all the Toolkit Applets triggered by the event have finished their processing. If the applet want

to send a specific response, it shall post it before any invocation of the ProactiveHandler.send()
method.

9.4.4 Details

The EnvelopeHandler, EnvelopeResponseHandler and USATEnvelopeHandler are

Temporary JCRE Entry Point Objects.

When the corresponding getTheHandler() method is called or a method of the handler is called, a system handler

is considered available if a ToolkitException with the reason code HANDLER_NOT_AVAILABLE is not thrown

EnvelopeHandler and USATEnvelopeHandler:

• When available, the EnvelopeHandler remains available and its content remains unchanged from the

invocation to the termination of the processToolkit() method.

• The EnvelopeHandler and USATEnvelopeHandler TLV lists are filled with the simple TLV data
objects of the ENVELOPE APDU command. The simple TLV data objects are provided in the order given in the
ENVELOPE command data if they result of a ENVELOPE command sent by the ME otherwise the order is

undefined (for exemple when built by the CAT Runtime Environment for the EVENT_EXTERNAL_FILE_UPDATE.

Developer tip
The order of the different TLV data objects is not specified so it is recommended to use the

ViewHandler.findTLV() methods to get each COMPREHENSION TLV.

EnvelopeResponseHandler:

• The EnvelopeResponseHandler is available (as specified in the ETSI TS 102 241 or the 3GPP TS 31.130
specifications) for all triggered Toolkit Applets, until a Toolkit Applet has posted an envelope response or sent a
proactive command.

• After a call to the post() method the handler is no longer available.

• After the first invocation of the ProactiveHandler.send() method the

EnvelopeResponseHandler is no more available.

• At the processToolkit() method invocation the TLV-List is cleared.

9.5 Event management

9.5.1 Overview

A toolkit applet can register or un-register to the different toolkit events and manage its menu entries using the different

methods defined in the ToolkitRegistry interface. The applet gets the reference to its registry entry by using the

ToolkitRegistrySystem.getEntry() method.

All the toolkit registry updates are available during all the applet life time and are not affected by the current applet life

cycle state. In particular, a toolkit applet is still considered as registered to an event if it is not in the selectable life

cycle state. But as long as the applet is not in the selectable state, it will not be triggered by the CAT Runtime
Environment if the event occurs.

The main methods to manage the registration for the events are the ToolkitRegistry.setEvent() and

ToolkitRegistry.clearEvent() methods with the indication of the event the applet wants to register or un-
register to.

The CAT Runtime Environment prevents the applet to explicitly register to some specific events relative to the menu
management, the timer management, the polling interval, the service management and the file updates management.

In this case, the ToolkitRegistry.setEvent() method throws the exception EVENT_NOT_ALLOWED. The
registration to these events is done by the CAT environment implicitly by particular methods:

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 49

• The registration to the EVENT_MENU_SELECTION and EVENT_MENU_SELECTION_HELP_REQUEST is done

when the menu entry has been initialized using the ToolkitRegistry.initMenuEntry() method.
• The registration to the EVENT_TIMER_EXPIRATION is done using the

ToolkitRegistry.allocateTimer() method.
• The registration to the EVENT_STATUS_COMMAND is done using the

ToolkitRegistry.requestPollInterval(short) method with the indication of requested duration.
• The registration to the EVENT_EVENT_DOWNLOAD_LOCAL_CONNECTION is done using the

ToolkitRegistry.allocateServiceIdentifer() method.
• The registration to the EVENT_EXTERNAL_FILE_UPDATE is done using one of the

ToolkitRegistry.registerFileEvent methods with the indication of the file or the file list that shall
be monitored.

The CAT Runtime Environment allows only one toolkit applet to be registered to some limited events such as the

EVENT_CALL_CONTROL_BY_NAA or the EVENT_MO_SHORT_MESSAGE_CONTROL_BY_NAA. The

ToolkitRegistry.setEvent() method throws the ToolkitException with the reason code

EVENT_ALREADY_REGISTERED if an applet is already registered to an limited event another applet wants to register to.

The CAT Runtime Environment can reject also an event registration, for example if the event registration requests a TAR
and the applet has not at least one TAR value assigned.

The ToolkitRegistry.setEvent() method does not throw any exception if the applet registers more than
once on the same event.

The ToolkitRegistry.setEventList() method is also available to register to several events.
Developer tip

This method is atomic: if the registration to one of the event is rejected, then the applet is not registered to any
of the events.

9.5.2 List of the available Events

Event name Reserved
short value

Comment

EVENT _PROFILE_DOWNLOAD 1 Get the mobile capabilities

EVENT _STATUS_COMMAND 19 Get triggered when a STATUS command is sent by

the mobile (CAT polling procedure)

EVENT _UNRECOGNIZED_ENVELOPE -1 Handles the evolution of the events for the future

User related events

EVENT_MENU_SELECTION
7

EVENT_MENU_SELECTION_HELP_REQUEST
8

Handle the toolkit menu selection by the user

OTA related events

EVENT_FORMATTED_SMS_PP_ENV (1)
2

EVENT_FORMATTED_SMS_PP_UPD (1)
3

EVENT_UNFORMATTED_SMS_PP_ENV (1)
4

EVENT_UNFORMATTED_SMS_PP_UPD (1)
5

Handle the SMS-PP messages sent by the network

EVENT_UNFORMATTED_SMS_CB (1)
6

EVENT_FORMATTED_SMS_CB (1)
24

Handle the SMS-CB messages sent by the network

Terminal related events

EVENT_TIMER_EXPIRATION
11

Use the timer capabilities of the handset

EVENT_CALL_CONTROL_BY_NAA
9

Control the outgoing calls and the outgoing SMs

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 50

EVENT_MO_SHORT_MESSAGE_CONTROL_BY_NA
A (1)

10

EVENT_EVENT_DOWNLOAD_

 _MT_CALL
12

 _CALL_CONNECTED
13

 _CALL_DISCONNECTED
14

Track changes of the current call states

 _LOCATION_STATUS
15

Track changes of the location status or location

information

 _USER_ACTIVITY
16

Track the user activity

 _IDLE_SCREEN_AVAILABLE
17

Get triggered when the mobile screen becomes
available.

 _CARD_READER_STATUS
18

Used when multiple cards are available on the
handset

 _LANGUAGE_SELECTION
20

Track changes of the currently used language

 _BROWSER_TERMINATION
21

Track the handset browser termination

 _DATA_AVAILABLE (2)
22

 _CHANNEL_STATUS (2)
23

Handle the BIP protocol

 _ACCESS_TECHNOLOGY_CHANGE
25

Track changes in the access technology (GSM,

UTRAN, etc)

 _DISPLAY_PARAMETER_CHANGED
26

Track changes of the display parameters (number of
characters, text wrapping, etc)

 _LOCAL_CONNECTION (3)
27

Track the incoming connection request on a local
bearer using a service previously declared by the
UICC

 _ NETWORK_SEARCH_MODE_CHANGE
28

Track changes in the network search mode (manual
or automatic)

 _BROWSING_STATUS
29

Track the error code sent by the network and

received by the browser

UICC related events

EVENT_PROACTIVE_HANDLER_AVAILABLE
123

Get informed when the proactive handler becomes

available

EVENT_EXTERNAL_FILE_UPDATE
124

Track the updates done by the handset on the
specified files

EVENT_APPLICATION_DESELECT
126

Get informed that an application (NAA) is no more
selected

EVENT_FIRST_COMMAND_AFTER_ATR
127

Get triggered just after the card reset.

(1) This event is defined in the 3GPP TS 31.130 specification
(2) This event is linked to the Bearer Independent Protocol (OPEN CHANNEL, CLOSE CHANNEL, SEND DATA, RECEIVE

DATA and GET CHANNEL STATUS proactive commands)
(3) This event is linked to the DECLARE SERVICE proactive command

Developer tip
The range of values [-2; -128] is reserved for proprietary events. A card can manage proprietary events but if an
applet uses one of these events, it will not be working properly on another card that may not handle this event.
In order to be interoperable, applets should not use these events.

9.5.3 Events Description

The complete description of the CAT Runtime Environment regarding each event is available in the ETSI TS 102 241 and
3GPP TS 31.111 specification.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 51

The following gives additional information when there are interoperability issues or when a clarification is required for
the applet developer.

• EVENT_PROFILE_DOWNLOAD
Upon reception of a TERMINAL PROFILE APDU command, the CAT Runtime Environment stores the terminal profile
and triggers all the Toolkit Applet(s) registered to this event.
The TERMINAL PROFILE APDU command is sent by the mobile during the UICC initialization procedure and when
the CAT functionality is modified in the mobile. The TERMINAL PROFILE indicates which CAT features are supported
by the mobile. The CAT Runtime Environment stores the profile sent by the mobile and an applet can check the

mobile facilities by using the different methods of the class uicc.toolkit.TerminalProfile.

Developer tip

An Applet is only able to send proactive commands if the TERMINAL PROFILE has been received after an ATR

• EVENT_MENU_SELECTION,
• EVENT_MENU_SELECTION_HELP_REQUEST

Upon reception of an ENVELOPE (MENU SELECTION) APDU command the CAT Runtime Environment only triggers
the Toolkit Applet registered to the corresponding event with the associated menu identifier. A Toolkit Applet is
triggered by the EVENT_MENU_SELECTION_HELP_REQUEST event only if help is supported for the corresponding
Menu entry.

A Toolkit Applet registers to these events using the ToolkitRegistry.initMenuEntry method. There is
no method to un-register to these events but the applet can use the method

ToolkitRegistry.disableMenuEntry to disable the menu entry. If a menu entry is disabled, it does not
appear on the toolkit menu of the terminal and the applet will not be triggered. The method

ToolkitRegistry.enableMenuEntry enables the menu again.

The maximum number of menu entries available for a toolkit applet is defined during the installation phase in the
“UICC toolkit parameters” field of the install(for install) command. The maximum length of a menu string is also

defined.

The ToolkitRegistry.initMenuEntry method throws an exception if all the menu entries available for
the applet are already initialized or if the length of the menu entry string exceeds the length defined during the
installation phase.
Once initialized the different properties of a menu entry can be updated using the

ToolkitRegistry.changeMenuEntry method.

Developer tip

The ToolkitRegistry.initMenuEntry method shall be called by the applet in the same order as the
order of the item parameters defined at the applet installation if the applet has several menu entries.
It is recommended that an applet initialize its menu entries during its installation.

Example:
public class AppletExample extends javacard.framework.Applet implements ToolkitInterface, ToolkitConstants {
 public ToolkitRegistry toolkitRegistry ;
 private byte[] menuEntry1 = {(byte)'M',(byte)'y',(byte)' ',(byte)'M',(byte)'e',(byte)'n',(byte)'u',(byte)'
',(byte)'1'};
 private byte[] menuEntry2 = {(byte)'M',(byte)'y',(byte)' ',(byte)'M',(byte)'e',(byte)'n',(byte)'u',(byte)'
',(byte)'2'};
 private byte menuId1, menuId2;

 /**

 * Applet constructor
 */

 public AppletExample () {
 // Register to the JCRE

 register() ;

 // Retrieve the Toolkit Registry object

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 52

 toolkitRegistry = ToolkitRegistrySystem.getEntry();

 // Create the menus

 menuId1 = toolkitRegistry.initMenuEntry(menuEntry1, (short)0, (short)menuEntry1.length, (byte)0, false,
(byte)0, (short)0) ;

 menuId2 = toolkitRegistry.initMenuEntry(menuEntry2, (short)0, (short)menuEntry2.length, (byte)0, false,
(byte)0, (short)0) ;

 }

 ...

 /**
 * Process Toolkit events
 */

 public void processToolkit (short event) {
 if (event == EVENT_MENU_SELECTION) {

 EnvelopeHandler theEnv = EnvelopeHandlerSystem.getTheHandler() ;
 byte menuId = theEnv.getItemIdentifier() ;
 if (menuId == menuId1) {
 // Insert Menu1 process
 }
 else if (menuId == menuId2) {
 // Insert Menu2 process
 }

 }
 }

}

• EVENT_TIMER_EXPIRATION
Upon reception of an ENVELOPE (TIMER EXPIRATION) APDU command, the CAT Runtime Environment only triggers
the Toolkit Applet registered to this event with the associated timer identifier.

A toolkit applet registers to this event using the method ToolkitRegistry.allocateTimer, the CAT
Runtime Environment will then allocate a timer resource to the applet. The applet may un-register invoking the

ToolkitRegistry.releaseTimer method.
Once the applet has allocated a timer, it shall send the proactive command TIMER_MANAGEMENT to start the timer,
configure the timer duration or stop the timer.

Developer tip

The method ToolkitRegistry.allocateTimer throws an exception if all the available timers are
already allocated or if the maximum number of timer available for this applet is reached.
The timer remains allocated to the applet until it explicitly releases it using the method

ToolkitRegistry.releaseTimer.
The maximum number of timers available on a UICC is 8 timers. The maximum number of timers available for a

given toolkit applet is defined in the UICC Toolkit application specific parameter of the install(for install) command
see ETSI TS 102 226.

Example:

ToolkitRegistry reg;
byte bTimerId;

final byte[] timerValue = {(byte)0x00, (byte)0x01, (byte)0x00};

/* Timer allocation */

reg = ToolkitRegistrySystem.getEntry();
bTimerId= reg.allocateTimer();

/* Send the proactive command to start the timer */

ProactiveHandler proHdlr = ProactiveHandlerSystem.getTheHandler() ;
proHdlr.init(PRO_CMD_TIMER_MANAGEMENT, (byte)0x00, (byte)DEV_ID_TERMINAL);

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 53

proHdlr.appendTLV(TAG_TIMER_IDENTIFIER, bTimerId);
proHdlr.appendTLV(TAG_TIMER_VALUE, timerValue, (short)0x00, (short)timerValue.length);
proHdlr.send();

• EVENT_STATUS_COMMAND

Upon reception of an STATUS APDU command the CAT Runtime Environment shall trigger all the Toolkit Applet(s)
registered to this event.

The applet registers to this event by calling the method ToolkitRegistry.requestPollInterval with
the indication of the requested duration negotiated with the mobile for the Proactive Polling procedure (STATUS
command regularly sent by the terminal according to the TS 102 221 and TS 102 223 specifications).

The ToolkitRegistry.requestPollInterval method can be used each time the applet wants to adjust
a new duration. If the duration is set to POLL_NO_DURATION, the applet deregisters from the event
EVENT_STATUS_COMMAND.

Several applets can register on this event and can request a different duration so the CAT Runtime Environment
may adjust the duration. The terminal can also adjust the duration to the one it can offer.

Developer tip
The ETSI TS 102 223 specification recommends that applets should not request short time intervals for an

extended period, as this will have an adverse effect on battery life, and should not use this command for time
management purposes.

• EVENT_FORMATTED_SMS_PP_ENV1

Upon reception of a formatted Short Message Point to Point via the ENVELOPE(SMS-PP DOWNLOAD) APDU
command, the CAT Runtime Environment verifies the security of the Short Message according to the 3GPP TS
31.115 specification and then triggers the applet registered to this event and having the corresponding TAR value.

The toolkit can retrieve the message using the uicc.usim.toolkit.USATEnvelopeHandler defined in
the 3GPP TS 31.130. The data is provided deciphered.

The toolkit applet can post a response using the EnvelopeResponseHandler.post method. The CAT
Runtime Environment will insert the data in the additional data field of the Response Packet, compute the security

as defined in the 3GPP TS 31.115 and send the response packet using the SMS_DELIVER_REPORT or the
SMS_SUBMIT.

When a SMS is received as a concatenated SMS as defined in the 3GPP TS 23.040, the CAT Runtime Environment

links the different single SMS to re-assemble the original message and fills the USATEnvelopeHandler with
the original message (the concatenation headers are not present and the TP_elements and
TS_ServiceCenterAddress fields are the ones of the last received SMS).

See the 3GPP TS 31.130 for details.

A toolkit applet registers to this event by using the ToolkitRegistry.setEvent method with the event
value set to EVENT_FORMATTED_SMS_PP_ENV. This method throws an exception if no TAR value is defined for the
applet.

1 This event is defined in the TS 31 130 specification

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 54

The TAR value associated to a toolkit applet is defined during the applet installation phase: the ”UICC toolkit
parameters” field of the install (for install) command can include a list of TAR values to which the applet wants to
subscribe to, otherwise the TAR is taken from the AID.

Developer tip

The applet is triggered only if the security according to the 3GPP TS 31.115 specification has been successfully
verified by the CAT Runtime Environment and if the security level used complies with the minimum security level

required by the applet (parameter defined during the applet installation phase).

Interoperability issue
The CAT Runtime Environment may reply busy and not trigger the toolkit applet if e.g. a PoR using SMS SUBMIT
is required in the incoming message and a proactive session is ongoing.

• EVENT_FORMATTED_SMS_PP_UPD1

Upon reception of a formatted Short Message Point to Point via an UPDATE_RECORD EFSMS, the CAT Runtime
Environment updates the EFSMS file, converts the UPDATE_RECORD EFSMS to emulate an ENVELOPE (SMS-PP

DOWNLOAD) and fills the uicc.usim.toolkit.USATEnvelopeHandler. Then it verifies the security of
the SMS according to the 3GPP TS 31 115 and triggers the applet registered to this event and having the

corresponding TAR.

The details of the construction of the USATEnvelopeHandler TLV from the elements of the UPDATE_RECORD
EFSMS are described in the 3GPP TS 31 130 specification. The toolkit can retrieve the message using the

USATEnvelopeHandler defined in the 3GPP TS 31.130. The data is provided deciphered.

When a SMS is received as a concatenated SMS as defined in the 3GPP TS 23.040, the CAT Runtime Environment

links the different single SMS to re-assemble the original message and fills the USATEnvelopeHandler with the
original message.

Developer tip

• The order of the TLVs given in the USATEnvelopeHandler is not specified so it is recommended to use

the ViewHandler.findTLV() methods to get each COMPREHENSION TLV.

• The EnvelopeResponseHandler is not available.
• The applet is triggered only if the security according to the TS 31.115 specification has been successfully

verified by the CAT Runtime Environment.

• Even if the EnvelopeHandler is available for these events and contains the same data, the usage of the

USATEnvelopeHandler is recommended as it provides methods distinguished to handle SMS functionality.

• EVENT_UNFORMATTED_SMS_PP_ENV2

Upon reception of an unformatted Short Message Point to Point (Single or Concatenated) via the ENVELOPE(SMS-PP
DOWNLOAD) APDU command, the CAT Runtime Environment triggers all the toolkit applets registered to this event.

The applet can get the message using the USATEnvelopeHandler. The toolkit applet can post a response

using the EnvelopeResponseHandler.post method.

Developer tip

According to the EnvelopeResponseHandler availability rules only the first triggered applet is guaranteed
to be able to send back a response.

• EVENT_UNFORMATTED_SMS_PP_UPD2

Upon reception of an unformatted Short Message Point to Point (Single or Concatenated) via an UPDATE_RECORD
EFSMS, the CAT Runtime Environment updates the EFSMS file, converts the UPDATE_RECORD EFSMS to emulate an

ENVELOPE (SMS-PP DOWNLOAD) and fills in the uicc.usim.toolkit.USATEnvelopeHandler, and
triggers all the toolkit applets registered to this event.

Developer tips

The order of the TLVs given in the USATEnvelopeHandler is not specified so it is recommended to use the

ViewHandler.findTLV methods to get each COMPREHENSION TLV.

The EnvelopeResponseHandler is not available.
The content of EFSMS may have been modified by a previously triggered Toolkit Applet.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 55

• EVENT_FORMATTED_SMS_CB2
Upon reception of a formatted Cell Broadcast message via the ENVELOPE (CELL BROADCAST DOWNLOAD) APDU

command, the CAT Runtime Environment verifies the security of the Short Message according to the 3GPP TS
31.115 and then triggers the applet registered to this event and having the corresponding TAR.

The toolkit can retrieve the message using the uicc.usim.toolkit.USATEnvelopeHandler defined in
the 3GPP TS 31.130. The data are provided deciphered.

When a Cell Broadcast Message is received as multiple pages as defined in the 3GPP TS 23.041 specification, the
CAT Runtime Environment links the different single pages to re-assemble the original message and fills the

USATEnvelopeHandler with the original message as a one Cell Broadcast page TLV (the concatenation

headers are not present and the TP_elements and TS_ServiceCenterAddress fields are the ones of the last received
SMS).

• EVENT_UNFORMATTED_SMS_CB2

Upon reception of an unformatted Cell Broadcast message via the ENVELOPE (CELL BROADCAST DOWNLOAD)
APDU command, the CAT Runtime Environment triggers all the Toolkit Applets registered to this event.

• EVENT_CALL_CONTROL_BY_NAA

• EVENT_MO_SHORT_MESSAGE_CONTROL_BY_NAA2
Upon reception of the ENVELOPE (CALL CONTROL) APDU command or the ENVELOPE (MO_SHORT_MESSAGE_
CONTROL) APDU command the CAT Runtime Environment triggers the Toolkit Applet registered to this event.

Regardless of the Toolkit Applet state the CAT Runtime Environment does not allow more than one Toolkit Applet to
be registered to this event at a time. In particular, if a Toolkit Applet is registered to this event but not in selectable

state the CAT Runtime Environment must not allow another Toolkit Applet to register to this event.
When triggered on this event, this applet can define which response shall be sent to the terminal in response to the

ENVELOPE (CALL CONTROL) command in order to allow the call, to reject the call or to allow the call but with

modification. This is done by the applet using the EnvelopeResponseHandler.post() method or the

EnvelopeResponseHandler.postAsBERTLV() method.

Developer tip

The Call Control resource is shared between the (U)SAT API and the (SAT) API. So - If an applet is registered to
Call Control with (U)SIM API, an applet using SIM API can not register to Call Control and vice versa.

• EVENT_EVENT_DOWNLOAD_MT_CALL

• EVENT_EVENT_DOWNLOAD_CALL_CONNECTED
• EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED

• EVENT_EVENT_DOWNLOAD_LOCATION_STATUS
• EVENT_EVENT_DOWNLOAD_USER_ACTIVITY

• EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE
• EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS
• EVENT_EVENT_DOWNLOAD_LANGUAGE_SELECTION

• EVENT_EVENT_DOWNLOAD_BROWSER_TERMINATION
• EVENT_EVENT_DOWNLOAD_NETWORK_SEARCH

• EVENT_EVENT_DOWNLOAD_BROWSING_STATUS

2 This event defined in the 3GPP TS 31 130 specification

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 56

• EVENT_EVENT_DOWNLOAD_ACCESS_TECHNOLOGY_CHANGE
• EVENT_EVENT_DOWNLOAD_DISPLAY_PARAMETER_CHANGED

Upon reception of the corresponding ENVELOPE (Event Download) APDU command, the CAT Runtime Environment
triggers all the Toolkit Applets registered to the corresponding event.

• EVENT_EVENT_DOWNLOAD_DATA_AVAILABLE
• EVENT_EVENT_DOWNLOAD_CHANNEL_STATUS

Upon reception of the corresponding ENVELOPE (Event Download) APDU command, the CAT Runtime Environment
only triggers the Toolkit Applet registered to the corresponding event with the associated channel identifier.

The applet registers to these events using the ToolkitRegistry.setEvent method but the registration is
effective only once the toolkit applet has issued a successful OPEN CHANNEL proactive command, and is valid until

the first successful CLOSE CHANNEL with the corresponding channel identifier, or the end of the card session.
When a Toolkit Applet sends an OPEN CHANNEL proactive command and receives a TERMINAL RESPONSE with

General Result = "0x0X", the framework assigns the channel identifier to the calling Toolkit Applet.
When a Toolkit Applet sends a CLOSE CHANNEL proactive command and receives a TERMINAL RESPONSE with
General Result ="0x0X", the framework releases the corresponding channel identifier.

Developer tip
In case of channel drop, we recommend to explicitly close the channel using the CLOSE CHANNEL command prior
to open it again using the OPEN CHANNEL command. In this case, it is also recommended to catch the exception

that can be thrown by the CAT Runtime Environment when the applet closes the channel.

• EVENT_EVENT_DOWNLOAD_LOCAL_CONNECTION
Upon reception of an ENVELOPE (DOWNLOAD LOCAL CONNECTION) APDU command, the CAT Runtime
Environment only triggers the Toolkit Applet registered to this event with the associated service identifier.
The applet registers to the event by calling the method

ToolkitRegistry.allocateServiceIdentifer. The applet can deregister by calling the method

ToolkitRegistry.releaseServiceIdentifer. Once the applet has allocated a service, it issues the
proactive command DECLARE SERVICE to add or delete a service to the mobile service database.

The registration to this event is effective once the toolkit applet has issued a successful DECLARE SERVICE (add)
proactive command, and is valid until the first successful DECLARE SERVICE (delete) with the corresponding service

identifier, or the end of the card session.

• EVENT_PROACTIVE_HANDLER_AVAILABLE
The CAT Runtime Environment triggers all the Toolkit Applets registered to this event when the

ProactiveHandler is available and all the Toolkit Applets registered to the previous event have been triggered

and have returned from the processToolkit invocation.
When a Toolkit Applet is triggered, it is automatically deregistered from this event by the CAT Runtime Environment.

Developer tip

When the Toolkit Applet is triggered on this event, the EnvelopeHandler is not available. We advise that the

Toolkit Applet stores the handler data before registering to this event.

• EVENT_APPLICATION_DESELECT
When an application session is terminated, the CAT Runtime Environment triggers all the Toolkit Applets registered

to this event.

The AID of the deselected application is available to the Toolkit Applet in the EnvelopeHandler.

Interoperability issue
The SIM Alliance members agree that this event is triggered when a first level application including NAA is
deselected and independently by the used logical channel.
In case of card reset, the CAT Runtime Environment may not trigger the event.

• EVENT_FIRST_COMMAND_AFTER_ATR
Upon reception of the first APDU after the ATR and before the Status Word of the processed command has been

sent back by the UICC, the CAT Runtime Environment triggers all the Toolkit Applet(s) registered to this event.
If the first APDU received is a toolkit applet triggering APDU (e.g. TERMINAL PROFILE), the toolkit applets
registered to the EVENT_FIRST_COMMAND_AFTER_ATR event are triggered before the one registered to the
EVENT_TERMINAL_PROFILE if any.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 57

The ProactiveHandler is not available as the CAT session is not open.

• EVENT_UNRECOGNIZED_ENVELOPE

Upon reception of an unrecognized ENVELOPE APDU command, the CAT Runtime Environment triggers all the
Toolkit Applet(s) registered to this event.
An ENVELOPE APDU command is considered as unrecognized by the CAT Runtime Environment if its BER-TLV tag is

not defined in the ToolkitConstants interface. Only the first triggered toolkit applet is guaranteed to be able
to post a response.

• EVENT_EXTERNAL_FILE_UPDATE
Upon successful execution of an UPDATE BINARY or UPDATE RECORD or INCREASE APDU command (sent by the

Terminal and received by the UICC on the I/O line), the CAT Runtime Environment triggers all the Toolkit Applets
registered to this event with the associated updated file. An Applet is only triggered once per command.

The toolkit applet can get the details of the file update by reading the EnvelopeHandler. The details of the

content of the EnvelopeHandler are defined in the ETSI TS 102 241 specification.

The applet registers to this event using one of the ToolkitRegistry.registerFileEvent methods with
the indication of the file or the file list that should be monitored.

The applet can deregister for a particular file using one of the ToolkitRegistry.deregisterFileEvent
methods.

A call to the ToolkitRegistry.clearEvent(EVENT_EXTERNAL_FILE_UPDATE) clears the registration
to the event EVENT_EXTERNAL_FILE_UPDATE for all the registered files.

Developer tip

• The order of the TLVs in the EnvelopeHandler is not specified so it is recommended to use the

ViewHandler.findTLV() methods to get each COMPREHENSION TLV.
• The value of the File Update Information tag is 0x3B (BER-TLV tag for intra-UICC communication as defined
in the ETSI TS 101.220 specification)

• When calling one of the methods ToolkitRegistry.registerFileEvent() or

ToolkitRegistry.deregisterFileEvent(), the value of the fileEvent parameter should be set

to EVENT_EXTERNAL_FILE_UPDATE (as it is the only standardized one at the moment).

Interoperability issue
It is not interoperable if the event EVENT_EXTERNAL_FILE_UPDATE is generated on a specific file also in case of

updating of a file mapped with that file.

9.6 Proactive Command

9.6.1 Proactive command management

The proactive protocol (i.e. 91xx, Fetch, Terminal Response) is completely handled by the CAT environment. A toolkit
applet can ask the CAT Runtime Environment to send a proactive command through the ProactiveHandler. The toolkit
applet can get the terminal response to the proactive command (Terminal Response) using the

ProactiveResponseHandler.

Developer tip
• As the ProactiveHandler may not be available (re-entrance), it is recommended to check the handler availability

using the exception mechanism: a ToolkitException with the reason code HANDLER_NOT_AVAILABLE is
thrown if the handler is not available.

The toolkit applet retrieves the ProactiveHandler using the uicc.toolkit

ProactiveHandlerSystem.getTheHandler()method. Then the applet can build the proactive command:

• Initialize the proactive command with the ProactiveHandler.init() method or any of the other

methods ProactiveHandler.initDisplayText(), ProactiveHandler.initGetInkey(),
ProactiveHandler.initGetInput() or ProactiveHandler.initMoreTime().

• Use one of the EditHandler.appendTLV() methods to add the different TLVs that are required for the
proactive command as defined in the TS 102 223 specification

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 58

• Call the method ProactiveHandler.send to request the CAT Runtime Environment to send this
proactive command to the mobile and wait for the Response.

The execution of the toolkit applet is paused until the CAT Runtime Environment has transmitted the proactive command
and received the response of the terminal. When receiving the Terminal Response, the CAT Runtime Environment
resumes the toolkit applet.

On the return from the send method, the toolkit applet can analyze the response of the mobile:

• The send method returns the general result of the proactive command execution (first byte of Result TLV in
Terminal Response)

• The ProactiveResponseHandler contains all the simple TLV data objects of the TERMINAL RESPONSE
command sent by the terminal in response to the proactive command.

The toolkit applet retrieves the ProactiveResponseHandler using the

uicc.toolkit.ProactiveHandlerSystem.getTheHandler method. Several methods are defined in the

ProactiveResponseHandler class to ease the terminal response analysis. The methods inherited from the

ViewHander class can also be used.

The send method may throw the exception COMMAND_NOT_ALLOWED if the Proactive command to be sent or one of
its parameter is not allowed by the CAT Runtime Environment:

The CAT Runtime Environment checks the content of ProactiveHandler:
• The CAT Runtime Environment prevents the Toolkit Applet from sending the following system proactive

commands: SET UP MENU, SET UP EVENT LIST, POLL INTERVAL, POLLING OFF.
• The CAT Runtime Environment prevents a Toolkit Applet from sending a TIMER MANAGEMENT proactive

command using a timer identifier, which is not allocated to it.
• The CAT Runtime Environment prevents a Toolkit Applet from sending a DECLARE SERVICE (add, delete)

proactive command using a service identifier, which is not allocated to it.
• The CAT Runtime Environment prevents a Toolkit Applet from sending a SEND DATA, RECEIVE DATA and

CLOSE CHANNEL proactive commands using a channel identifier, which is not allocated to it.
• The CAT Runtime Environment prevents a Toolkit Applet from sending an OPEN CHANNEL proactive command

if it exceeds the maximum number of channel allocated to this applet.

All the proactive commands are sent to the terminal as constructed by the Toolkit Applet without any check by the CAT

Runtime Environment.

Developer tips

• Several methods are defined in the ProactiveHandler class to simplify the building of some proactive

commands: initDisplayText(), initGetInkey(), initGetInput(),

initCloseChannel() and initMoreTime().

• At the send method invocation, a pending Toolkit Applet transaction is aborted.
• If an applet wants to use the SET UP IDLE MODE TEXT proactive command, the CAT Runtime Environment

cannot guarantee that another Toolkit Applet will not overwrite this text later on.

Example:

byte[] String = {(byte)'H',(byte)'e',(byte)'l',(byte)'l',(byte)'o'} ;

 /**
 * Send a DISPLAY TEXT.

 */
ProactiveHandler proHdlr = ProactiveHandlerSystem.getTheHandler() ;
proHdlr.initDisplayText((byte)0,

 (byte)0x04,
 String,

 (short) 0,
 (short) String.length) ;

proHdlr.send() ;

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 59

9.6.2 Details on the Proactive Handler and ProactiveResponse Handler

The ProactiveHandler, ProactiveResponseHandler are Temporary JCRE Entry Point Object.

When the corresponding getTheHandler() method is called or a method of the handler is called, a system handler

is considered available if a ToolkitException with the reason code HANDLER_NOT_AVAILABLE is not thrown

ProactiveHandler:

• The ProactiveHandler is not available if the Terminal Profile command has not yet been processed by the

CAT Runtime Environment.

• When available the ProactiveHandler remains available until the termination of the

processToolkit() method.
• If a proactive command is pending the ProactiveHandler may not be available.

• At the processToolkit() method invocation the TLV-List is cleared.
• At the call of its init method the content is cleared and then initialized.

• After a call to ProactiveHandler.send() method the content of the handler is not modified by the CAT
Runtime Environment.

ProactiveResponseHandler:

• The ProactiveResponseHandler is available as soon as the ProactiveHandler is available, its

TLV list is empty before the first call to the ProactiveHandler.send() method. It remains available until

the termination of the processToolkit() method.

• The ProactiveResponseHandler is not available if the ProactiveHandler is not available.

• The ProactiveResponseHandler TLV list is filled with the simple TLV data objects of the last TERMINAL
RESPONSE APDU command. The simple TLV data objects is provided in the order given in the TERMINAL
RESPONSE command data.

• The ProactiveResponseHandler content is updated after each successful call to

ProactiveHandler.send() method and remains unchanged until the next successful call to the

ProactiveHandler.send() method.

9.6.3 System Proactive commands

The CAT Runtime Environment is in charge of the system proactive commands SET UP MENU, SET UP EVENT LIST and
POLL INTERVAL. These commands are used to inform the mobile on the menu items, the event list and the poll interval
duration required by any toolkit applet installed on the card. But it only contains information relative to the Toolkit
Applets that are in the selectable state.

The system proactive commands are sent at the beginning of a CAT session. During a CAT session, the CAT Runtime
Environment sends a system proactive command SET UP MENU, SET UP EVENT LIST, POLL INTERVAL or POLLING OFF
whenever the menu items, the registered event list or the poll interval duration has changed.

The CAT Runtime Environment sends its system proactive command(s) as soon as no proactive session is ongoing and
after all the Toolkit Applets registered to the current events have been triggered and have returned from the

processToolkit() method invocation.

The full CAT Runtime Environment behaviour to generate the SETUP MENU , the SETUP EVENT LIST, the POLL

INTERVAL and POLLING OFF is described in the ETSI TS 102 241 specification.

Concerning the SETUP MENU, here are some highlights:

• If one toolkit applet indicates that help is available for at least one menu entry, the CAT Runtime Environment
indicates to the mobile that help information is available.

• The CAT Runtime Environment uses the content of the EFSUME file to set the menu title. The EFSUME file is
defined in the ETSI TS 102 222 specification.

• If a text attribute different from the default format is provided by at least one menu entry, the CAT Runtime
Environment inserts an Item Text Attribute list.

• The CAT Runtime Environment provides an Item Icon identifier list only if a icon is requested for all the menu
items. The Icon list qualifier transmitted to the mobile is 'icon is not self explanatory' if one of the applet
indicates this qualifier.

• The CAT Runtime Environment provides the items to the mobile in the same order than in its Menu Entries’ list.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 60

• The CAT Runtime Environment provides only the items corresponding to enabled menu entries and if the toolkit
applet life cycle state is selectable.

The position of a toolkit applet menu entry in the Menu Entries’ list depends on the position requested at the applet
installation (“position” field in the uicc.toolkit specific parameters of the install (for install) command) but also on the
content of the Menu Entries’ list when the applet has been installed. The Menu Entries’ list is managed by the CAT
Runtime Environment regardless of the menu entry state (enable/disable) as well as regardless of the Toolkit Applet(s)
life cycle state (e.g. Selectable/Locked, etc.). Several examples are provided in the Annex D of the ETSI TS 102 241 to
illustrate the management of the menu entry order in the Menu Entries’ list of the CAT Runtime Environment.

The item identifier used for a menu entry is allocated by the CAT Runtime Environment according to the request done at
the applet installation (“identifier” field in the uicc toolkit specific parameters of the install (for install) command).

The maximum numbers of menu entries available for the toolkit applet and the maximum length available for a menu
item text is defined at the applet installation (fields in the uicc,toolkit specific parameters of the install (for install)

command).

Interoperability issue
To avoid any interoperability issue on a 2G/3G card, the SIM Alliance members recommend to map the EFSUME file
under the DFTELECOM (USIM specification) with the one under the DFGSM (SIM specification).

9.7 File access API and File administration API

9.7.1 Structure of the File System

The UICC file system has the following structure:

MF
EF DIR

ADF1

ADF2

DF TELECOM

EF2 EFxEF1

EF PL EF ICCID

ADF1

EF2 EFzEF1 DF1

EF4EF3

ADF2

EF2 EFyEF1 DF1

EF4EF3 EF5

Figure 5 – File system structure in the UICC

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 61

9.7.2 The file access API

The file access API consists of the uicc.access package defined in the ETSI TS 102 241 specification. It allows to
access files located under the UICC shared file system or under an ADF file system.

The (U)SIM file access API consists of the package uicc.usim.access. This package defines additional constants to

those defined in the uicc.access package.

9.7.2.1 FileView objects

The access to the file system is handled using FileView objects, either a UICC FileView object or an ADF

FileView object:

• The UICC FileView object allows accessing the MF and all the DFs and EFs that are located under the MF

including DFTELECOM. The access to the DFs or EFs under any ADF is not allowed. The UICC FileView object

can be retrieved using the method UICCSystem.getTheUICCView().

• An ADF FileView object allows accessing only the DFs and EFs that are located under the ADF but not the

DFs or EFs under the MF. An ADF FileView object can be retrieved using one of the methods

UICCSystem.getTheFileView(...) by passing the full AID of the application owning the ADF as
parameter (for example the full AID of the (U)SIM application).

Developer tips
• The AIDs of the applications owning an ADF and available on a UICC are listed in the EFDIR file under the MF

(see the ETSI TS 102 221 specification for the description of the EFDIR content).

• The only way to access the DF GSM is to use the UICC FileView object.

• The access to the SIM file system defined in the 3GPP TS 51.011 is available using the UICC FileView
object.

• It is recommended to call the getTheFileView(...) or getTheUICCView() methods in the applet
constructor, as they are memory consuming.

Each time the getTheFileView(...) or getTheUICCView() methods are called, a new FileView object is
created (as a permanent JCRE entry point object).

A separate and independent file context3 is associated to each FileView object: the operation performed on files in a

given FileView object shall not affect the file context associated with any other FileView object. After the applet
termination, the context (current selected file, etc) may remain depending on the object type and can be retrieved

during the next applet execution.
The context can be transient or persistent depending on what was required by the Applet during the creation of the

FileView object (event parameter of the getTheFileView() or getTheUICCView() methods).

The root of the context of a FileView object is the MF for the UICC FileView or the ADF for an ADF FileView.

At the creation of a FileView object or when the transient context of a FileView is cleared, the current DF of the

FileView's context is set to the root.

3 The file context includes at least information about the current DF, the current EF and the current record (for linear fixed
or cyclic files).

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 62

The access control privileges associated with each FileView object is given by the Access Domain of the toolkit applet
during its installation phase. The Access Domain of the toolkit applet is defined in the UICC Access Application specific
parameter field of the install (for install) command (tag value ‘81’). A toolkit applet can have an Access Domain relative
to the access to the UICC file system part and an Access Domain for each ADF file system part.

The access domain for the UICC file system part is associated to the UICC FileView objects; the access domain for an

ADF file system part is associated to the ADF FileView objects relative to this ADF.

Each time a method of the FileView object is invoked, the access control privilege of the FileView object is
verified against the access rules of the given DF/EF as described in the ETSI TS 102 221.

9.7.2.2 FileView operations

The different methods defined in the FileView interface are

• select(): selects a file or a directory using the file ID or the SFI.

• status(): returns the FCP of the current selected DF

• readBinary(): reads the content of the current transparent EF

• readRecord(): reads a record or a part of a record of the current linear fixed/cyclic EF

• updateBinary(): updates the content of the current transparent EF

• updateRecord(): updates a record or a part of a record of the current linear fixed/cyclic EF

• searchRecord(): searches a pattern in the current linear fixed/cyclic EF

• increase(): increases the current record of the current cyclic EF

• activateFile(): activates the currently selected EF

• deactivateFile(): deactivates the currently selected EF

These methods implement in fact the same functionality as the SELECT, STATUS, READ BINARY, READ RECORD,
UPDATE BINARY, UPDATE RECORD, SEARCH RECORD, INCREASE, ACTIVATE, DEACTIVATE commands defined in the
ETSI TS 102 221 specifications.

Developer tips

• When a non-shareable file is selected using one of the select() methods, this file is no more accessible by
other applets, by the Remote File management application or by terminal operations. Furthermore when a non-
shareable file is selected by the mobile, this file is no longer accessible for any other application. The file is

accessible again when the application selects another file. If the FileView context is transient, the file
becomes also accessible when the context is cleared.

• The reserved FID '7FFF' can be used as a FID for the ADF to select the root of an ADF FileView object

• When selecting a cyclic file the current record number is undefined.

Example:

public static FileView uiccView;
private byte[] Buffer = {(byte)'H',(byte)'e',(byte)'l',(byte)'l',(byte)'o'} ;

// get a reference to the UICC interface
uiccView = UICCSystem.getTheUICCView(JCSystem.CLEAR_ON_RESET);

uiccView.select(MF_ID);

uiccView.select(UICCConstants.FID_DF_TELECOM)
uiccView.select(EF_TEST_ID);
 // Update file
uiccView.updateBinary((short) 0, Buffer, (short) 0, Buffer.length);

9.7.3 File Administration API

A specific API is available for the file administration (create, delete and resize operations) in the

uicc.access.fileAdministration package defined in the ETSI TS 102 241 specification.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 63

9.7.3.1 AdminFileView objects

The administrative access to the file system is handled using AdminFileView objects. Two AdminFileView
objects are available, one for the UICC file system administration and one for an ADF file system administration:

• The UICC AdminFileView object allows administrating the EFs and DFs under the MF. The UICC

AdminFileView object can be retrieved using the method getTheUICCAdminFileView(...) defined

in the AdminFileViewBuilder class.

• An ADF AdminFileView object allows administrating only the DFs and EFs that are located under the ADF.

An ADF AdminFileView object can be retrieved using one of the methods

getTheAdminFileView(...) with passing the full AID of the application owning the ADF as parameter

(for example the full AID of the (U)SIM application). The getTheAdminFileView(...) methods are

defined in the AdminFileViewBuilder class.

The AdminFileView interface inherits of the FileView interface and the AdminFileView objects follows the

behavior of the FileView objects: the associated context can be persistent or transient; the context initialization rules
are the same, etc.

The access control privileges associated to each AdminFileView object is given by the Administrative Access Domain
of the toolkit applet during its installation phase. The Administrative Access Domain of the toolkit applet is defined in the
UICC Administrative Access Application specific parameter field of the install (for install) command (tag value ‘82’). A
toolkit applet can have an Administrative Access Domain relative to the access to the UICC file system part and an
Administrative Access Domain for each ADF file system part.

The Administrative Access Domain for the UICC file system part is associated to the UICC AdminFileView objects;

the Administrative Access Domain for an ADF file system part is associated to the ADF AdminFileView objects
relative to this ADF.

Each time a method of the AdminFileView object is invoked, the access control privilege of the AdminFileView
object is verified against the access rules of the given DF/EF as described in the ETSI TS 102 221.

9.7.3.2 AdminFileView operations

The different methods defined in the AdminFileView interface are

• createFile(): creates a new EF or a new DF under the current DF or ADF

• deleteFile(): deletes an EF under the current DF or deletes a DF with its complete sub-tree.

• resizeFile(): resize an EF DF under the current DF or ADF

These methods implement in fact the same functionality as the CREATE, DELETE and RESIZE commands defined in the
ETSI TS 102 222 specifications.
The details of the different methods are defined in the ETSI TS 102 241.

If EF or DF file already exists, or if memory is not available for creation, then an AdminException is thrown.

Developer tip

The createFile() and resizeFile() methods uses a ViewHandler object to define a data field
identical to the one used for the CREATE and RESIZE commands. The

uicc.system.HandlerBuilder.buildTLVHandler() method is useful to create a ViewHandler

object. The TLV content can be set either when creating the ViewHandler object or later on. In this case the

handler can be cast to an EditHandler and then filled with the TLV content. To avoid memory allocation

during lifecycle of the applet, it is recommended to invoke the buildTLVHandler() method in the
constructor of the applet.

The AdminFileView interface inherits of the FileView interface so all methods such as select(),

readBinary() and so one are also available.

When the deleteFile()method is invoked, SIM Alliance members agree that they all provide mechanisms to
recover memory space but the implementation of this features can be different for the SIM Alliance members.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 64

private byte [] fileDescriptor = {
 (byte)0x42,(byte)0x21,(byte)0x00,(byte)0x04};
 // File Descriptor: EF linear fixed, record length 4

private short fileId = (short)0x8302; // File Id

private byte LCSI = (byte)0x05; // LCSI activated

private byte [] securityAttribute = {

 (byte)0xAC,(byte)0x00, // Security attribute (EF Arr)
 (byte)0x01,(byte)0x01, // Security attribute (SD 1, record nb)
 (byte)0x00,(byte)0x01}; // Security attribute (SD 0, record nb)

private short fileSize = 0x0064; // File Size (25 rec * 4 bytes = 100)

private byte [] sfiTLV = {

 (byte)0x88,(byte)0x00}; // sfiTLV – no SFI – length = 0

AdminFileView adminFileView= AdminFileViewBuilder.getTheUICCAdminFileView(JCSystem.CLEAR_ON_RESET) ;

// Select the MF
adminFileView.select((short)0x3F00);
// Create EF AF80
createCmd = HandlerBuilder.buildTLVHandler(HandlerBuilder.EDIT_HANDLER, (short)255);

createCmd.appendTLV((byte)0x82, fileDescriptor, (short)0x00, (short)fileDescriptor.length);

createCmd.appendTLV((byte)0x83, fileId);
createCmd.appendTLV((byte)0x8A, LCSI);

createCmd.appendTLV((byte)0x8B, securityAttribute, (short)0x00, (short)securityAttribute.length);
createCmd.appendTLV((byte)0x80, fileSize);

createCmd.appendArray(sfiTLV, (short)0x00, (short) sfiTLV.length);

adminFileView.createFile(createCmd);

9.8 An useful resource: the uicc.system package
The uicc.system package provides facilities useful to developers to improve functionalities and reduce memory
consumption for the applications.

All facilities offered by this package are usable not only by Toolkit applications, but also by general Java Card
applications.

Two different classes are defined:

• HandlerBuilder – The HandlerBuilder is a factory providing methods to generate objects

implementing the uicc.toolkit.EditHandler or the uicc.toolkit.BEREditHandler
interfaces. The content of these objects is totally managed by the application who invoked the factory methods
and they don’t have any link with the system handlers (e.g. the Envelope handler).

Developer tip

Such object is really useful not only to build an object encapsulating a (BER) TLV structured byte sequence (like

the createFile parameter, but also to parse (BER) TLV structured byte sequence to find inside it TLV data

(like the FCP returned by the FileView method).

• UICCPlatform – The UICCPlatform allows the access by the application to same shared resources
owned by the Toolkit; in Release 6 just one resource has been defined, i.e. a transient byte array that can be
accessed by any application; the buffer is at least 256 byte long.

Developer tip
The volatile byte array has at least two use cases:

• An applet may use it as a “scratch” buffer, e.g. to perform a file access operation

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 65

• As it can be accessed by any Java Card firewall context, it can also be used to share data with other
applications belonging to different contexts.

9.9 SIM API
The SIM Alliance members agree that they all provide the SIM API as formerly defined in 3GPP TS 43.019 for the

Release 5. This API remains available to ensure that existing applets developed for the Release 5 (or for the previous
versions) can still be loaded and installed on a card compliant with the Release 6.

But it is strongly recommended that all the new applets are developed by using the (U)SIM API.

Coexistence of SIM API and of (U)SIM API is described in § 11.10.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 66

10 The phonebook

The aim of this chapter is to highlight some key features of the phonebook defined for the USIM application in 3GPP TS
31.102.

10.1 Phonebook Principle

The phonebook defined for the USIM application has been widely enhanced compared to the phonebook defined for the
SIM application.
The former SIM phonebook mainly involves only one file, the EFADN file. The EFADN includes the name of a contact (alpha

identifier) and its dialing number. It also includes an optional link to the EFEXT1 file if a called party sub address or
additional digits are required, and an optional link to the EFCCP file if specific network and bearer capabilities or mobile

equipment configuration are required to establish the call.
The USIM phonebook manages contacts. Contact information includes the name of the contact and its dialing number,

and if required the extension and capability/configuration parameters, as formerly defined for the SIM phonebook. But
they can also include one or several email addresses, a second name, other dialing numbers like fax or mobile phone

number, and a group such as business or friend. The different characteristics of a contact are spread out in different
specific files. A phonebook can contain more than 254 contacts; this is managed using several EFADN files.
The structure of the phonebook is not frozen but depends on the card personalization. The EFPBR file is used to

determine the actual phonebook structure.

10.2 Structure of the phonebook

10.2.1 The different files used to define a contact

The USIM phonebook involves a set of files in order to manage the different characteristics of a contact.

The different files used to compose a contact are:

File
name

File description Summary of the content

EFADN Abbreviated Dialing
Number

Main alpha identifier and dialing number of the contact

EFANR Additional Number Additional phone number or Supplementary Service Control strings (SSC)
attached to the contact

EFAAS Additional number

Alpha String

Alpha string of the additional number

EFEXT1 Extension 1 Extension data for the main dialing number or for an additional number.

Extension data are required:
- If the coding of the dialing number is greater than the 20-digit capacity of

EFADN or EFANR or if common digits are required to follow a dialing number
of less than 20 digits (DTMF string).

- To define a called party sub address.
EFCCP1 Capability Configuration

Parameters 1
Network and bearer capabilities, and mobile equipment settings to establish
the call (using the main dialing number or an additional number)

EFEMAIL Email Address Email address of the contact

EFSNE Second Name Entry Second name of the contact

EFGRP Grouping File List of groups to which the contact belongs

EFGAS Grouping Information
Alpha String

Alpha strings of the different groups

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 67

The only mandatory file is the file EFADN. The other files used to define the different fields of a phonebook entry are
optional. Their presence depends on the structure required for the phonebook. For example, it is possible to attach
none, one or several email addresses, additional numbers or second names to a contact. In this case none, one or

several files EFEMAIL, EFANR and EFSNE are defined.

The different type of file linking
The number of records in a field file may be less than the number of records in the file EFADN. Several types of links are

available to link all the field files to the EFADN.

Three types of file links are defined:
- The file link type 1: the field file contains as many records as the master EFADN file.
- The file link type 2: the field file contains fewer records than the master EFADN file. The link is done using a

pointer defined in the EFIAP administration file.
- The file link type 3: the record identifier of the field file is defined in the record of the master file. For example if

an extension is required for a record in EFADN, the record identifier in the EFEXT1 file is defined in the record of
EFADN itself.

The different types of file linking allowed for a specific file are defined in the 3GPP TS 31.102 specification.

According to the current version of the 3GPP TS 31.102 specification, only Type 3 files can contain records that can be
shared between several contacts.

How to retrieve the different fields of a contact?
The configuration of the phonebook is defined in the EFPBR file.
The entry point for a contact is the EFADN file. Once the record in EFADN is identified, the other fields are retrieved in the

different files according to the type of linking:
- Directly by reading the same record number in the field file, if this file is linked with a Type 1 linking

- By reading the right pointer in the same record number of the EFIAP file, if this field file is linked with a Type 2
linking. The value of the pointer gives the record number in the field file.

- Directly by reading the record number of the field file in the record itself, if this file is linked with a Type
3 linking

Creation/Deletion of information
In order to avoid unlinked data to introduce fragmentation of the files containing the phonebook, a specific procedure

shall be followed when creating a new entry in the phonebook or when deleting a complete or part of an entry.
Refer to the chapter “Phone book procedures” of the 3GPP TS 31.102 specification for details.

10.2.2 The EFPBR file (Phone Book Reference)

The structure of the phonebook is defined in the EFPBR file. This file is mandatory. The file identifier is ‘4F30’.

All files representing the phonebook are specified in EFPBR (except EFPSC, EFPUID and EFCC). Certain kinds of file can occur
more than once in the phonebook. For these kinds of file, no fixed file identifiers (FID) are specified. The assigned values
are defined in EFPBR. If a short file identifier (SFI) is assigned to a file defined in EFPBR, this SFI value is also indicated in
EFPBR. The type of file linking is also indicated for each file.

The EFPBR file may contain several records, each of them specifying the structure of up to 254 contacts in the
phonebook. If more than 254 contacts have to be stored, a second record is needed in EFPBR. The structure of a contact
is the same for all the contacts in the phonebook even if several records are defined in EFPBR.

Detailed content of EFPBR:

A record in EFPBR contains several constructed TLV objects, one for each type of file linking. The tag value is ‘A8’ for the
files with a link type 1, ‘A9’ for the files with a link type 2 and ‘AA’ for the files with a link type 3.

Each constructed TLV object contains a list of primitive TLV objects, one for each file of this type defined for a contact.
For example, if the phonebook contains two email files with a link type 2 and one additional number with a link type 2,

the TLV object with the tag ‘A9’ contains 3 primitive TLV objects, one for each EFEMAIL file and one for the EFANR file.
A primitive TLV object defines the type of the file (email file, additional number file, etc), the file identifier and the SFI
value if available. The type of the file is coded through the Tag of the primitive TLV object, for example ‘C0’ for EFADN,

‘CA’ for EFEMAIL, etc. The identifier and the SFI value are coded in the Value of the primitive TLV object. The Length of the
primitive TLV object is set to ‘03’ if a SFI value is defined; otherwise the Length is set to ‘02’.

At the end of each record of EFPBR, unused bytes, if any, are set to ‘FF’.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 68

An example of the phonebook content is given in Annex of the 3GPP TS 31.102 specification.

10.2.3 The EFIAP file (Index Administration Phonebook)

The EFIAP file is present if some files with a link type 2 are defined in the phonebook. It contains the pointers to the

different files of type 2 in order to retrieve the different fields of a contact.
It contains the same number of records as the corresponding EFADN file. It is linked to EFADN with a Type 1 linking: the

records are mapped one to one.
The amount of bytes in a record of the EFIAP is equal to the number of files with a Type 2 linking defined in the EFPBR.

The order of the pointers in a record of EFIAP is the same as the order of the file identifiers that appear in the
constructed TLV object indicated by the Tag ‘A9’ (Type 2 linking) in the EFPBR file.

The value ‘FF’ is used to indicate that no corresponding record in the indicated file is available.

10.2.4 The EFPBC file (Phone Book control)

The EFPBC file contains the control information and the hidden information of each phonebook entry. It is present if one
or both of the following features are managed: the hidden entries management, a GSM SIM application residing on the
UICC.
The EFPBC file contains the same number of records as the corresponding EFADN file. It is linked to EFADN with a Type 1
linking: the records are mapped one to one.
The control information is used when the EFADN and EFEXT1 files under DFTELECOM are modified by a terminal using the GSM

SIM application.
The hidden information is used to indicate whether a secret code shall be verified before displaying the phonebook

contact. The hidden key is defined in the EFHIDDENKEY file (‘6F3C’).

10.2.5 The other files

If the phonebook synchronization is supported, the EFPSC, EFUID, EFPUID and EFCC files are all mandatory (see § 10.6).

10.3 An example of phonebook content
The 3GPP TS 31.102 specification gives an example in Annex. An additional example is provided here:

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 69

ADN

ANR

EMAIL1

200

1

30

1

100

GRP

1

200

IAP

1

200

GAS

1

5

AAS

1

10

#3

HOMEbusiness

friend

#1

EXT1

1

5

#2 #25 #10

#5

CCP1

1

20

#21
#152

#152

PBR

#10

#25

#5

#152
#152

#152

#2

#21

#3

#1

SMITH 062233
smith@home

049999

SMITH 062233

smith@home

049999 HOME

business

friend

Figure 6 – A good example of a Phonebook

10.4 Global and local phonebooks
The UICC may contain a global phonebook, or application-specific phonebooks, or both in parallel. The global phonebook

is located in the DFPHONEBOOK under DFTELECOM. Each specific USIM application phonebook is located in the DFPHONEBOOK of
its respective application ADFUSIM. All the files related to a phonebook are located under their respective DFPHONEBOOK.

When both phonebook types co-exist, they are independent and no data is shared. In this case, it shall be possible for
the user to select which phonebook he would like to access.

10.5 Link with the GSM SIM phonebook
If a GSM SIM application resides on the UICC, the EFADN and EFEXT1 files from one DFPHONEBOOK are mapped to the EFADN

and EFEXT1 files of the DFTELECOM. Their file IDs are specified in TS 51.011, i.e. EFADN = '6F3A' and EFEXT1 = '6F4A',
respectively. Only the first 254 contacts can be mapped.

Synchronization between the 2G phonebook and the 3G phonebook

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 70

If the UICC is inserted into a terminal accessing the EFADN and EFEXT1 files under DFTELECOM and a record of these files has
been updated, a flag in the corresponding entry control information in the EFPBC under DFPHONEBOOK is set from 0 to 1 by
the UICC. If the UICC is later inserted into a terminal that supports the 3G phonebook, the terminal shall check the flag

in EFPBC and if this flag is set, update the EFCC, and then reset the flag. A flag set in EFPBC results in a full synchronization
of the phonebook between an external entity and the UICC (when synchronization is requested).

10.6 Phonebook synchronization
To support synchronization of phonebook contacts with other devices, the USIM may provide the following files: a
phonebook synchronization counter (PSC), a unique identifier (UID) and a change counter (CC) to indicate recent
changes.
If synchronization is supported in the phonebook, then EFPSC, EFUID, EFPUID and EFCC are all mandatory.
All these files are used to keep track of the updates/deletions in an existing phonebook entry. It is also possible to

update the phonebook in different terminals, which are still able to detect the changes (e.g. changes between different
handset and/or 2nd and 3rd generation of terminals).
Refer to the chapter “Phone book Synchronization” of the 3GPP TS 31.102 specification for further details.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 71

11 Interworking between SIM and USIM applications

A SIM application and a USIM application, which are implemented together on a unique UICC, can never be active at the
same time. It is also impossible to switch from one to the other during a session (selection of the application depends
depend on the ME (2G or 3G).
Applications (SIM/USIM) have to be virtually independent from a functional point of view. However, both applications

may share certain objects to optimize memory consumption.

11.1 IMSI, secret key and authentication algorithm
A single subscription is identified by many elements:

• A particular IMSI (IMSI 2G = IMSI 3G)
• A particular secret key (Ki for 2G or K for 3G, where Ki can be equal to K)

• A particular type of authentication algorithm (“A3/A8” for 2G or “f1-f5” for 3G).
A particularity, that is valid for 2G and 3G contexts, is that a single IMSI can never be connected to more than one

secret key or algorithm.

There are three possible options for the UICC:
• Separate IMSI & Separate Secret Key:
This case applies if the network operator wants to administrate the 2G and the 3G subscription (i.e. the

usage of a 2G and 3G ME, fully independent). Consequences are that USIM and SIM applications have to
keep separate IMSIs and also their own authentication algorithm. (see 3GPP TR 31 900 Annex B and 3GPP
TS 31 102).
• Separate IMSI & Shared Secret Key:
From a functional point of view, it is similar to the previous option, except that the UICC saves 128 bits for
the storage of a second secret key.

• Shared IMSI & Shared Secret Key:
This option is valid when the network operator wants to have a single subscription for a user
(independently of the ME (2G/3G)). IMSIs and secret keys are identical for SIM application and USIM
application.

11.2 Secret codes
For the SIM application, only CHV1 and CHV2, are available. They apply to files situated in DF-GSM and DF-TELECOM.
For the USIM application, up to 8 Application PINs with global key references may be available. The UICC can also
support up to 8 Local PINs with specific key references. Further, up to 10 administrative PINs can be defined. (see ETSI
TS 102 221 §9.4)
Local PINs can be used within the MF or within any ADF or DF. A replacement PIN, called Universal PIN, may also exist.

Mapping of PINs between 2G and 3G operations mode like enabling, disabling or changing of a PIN in one operation
mode impacts the other operation mode.

Interoperability issue

SIM Alliance members cannot guarantee Local PIN availability under the MF.

11.3 Mapping of CHV1
CHV1 in the SIM application can be mapped to any USIM application PIN with a global key reference, but only one at a

time.
When the UICC is single verification capable, CHV1 is mapped to USIM application PIN. If the USIM application PIN is
disabled, CHV1 is also disabled. (see 3GPP TR 31 900 Annex D1)

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 72

11.4 Mapping of CHV2
CHV2 (SIM application) can be mapped to the corresponding local key reference belonging to the USIM application to

which CHV1 is mapped. Regarding to the requirements in TS 11.11 and TS 51.011 for CHV2, this PIN cannot be disabled
in either operation mode. In that case, the UICC will return an appropriate error condition.

11.5 Mapping of Local PINs
A SIM does not support Local PINs.

11.6 Mapping of administrative PINs
The mapping of administrative PINs between 2G and 3G operation modes is fully under the discretion of each network
operator and card manufacturer.

11.7 Access condition
In case an EF or DF is accessible in SIM application and USIM application, independent 2G or 3G access condition can be
defined for this file. If necessary, it is the responsibility of the network operator and the card manufacturer that the
security attributes for 2G and 3G sessions are consistent.

11.8 Access to file system for 2G / 3G applets

11.8.1 Definitions

There are two definitions of file system:
• The UICC Shared File System application shall have access only to files situated under the MF (DFs

and EFs files). ADFs are not considered to be files under the MF.
• USIM File System allows access to DFs and EFs located under ADFs.

In this document, 2G applets correspond to applets using Release 5 APIs. For access file rules, theses applets will use

sim.access package. The sim.access can only access to the UICC Shared File System by using the SIMView
interface.

3G applets correspond to applets using Release 6 APIs. For access file rules, these applets will use uicc.access or

usim.access package. The uicc.access can access the whole file system (see § 9.7.2)

11.8.2 Accessibility table

The different ways to access file system by each file context is explain in the following table:

11.9 Activation of SIM and USIM applications
After a cold reset, no particular application is active on the UICC. The ME selects the right NAA (SIM or USIM application)
according to its capabilities. A 3G or 2G/3G dual mode ME or a 2G ME of R99 or Rel-4 with USIM support or a 2G ME of
Rel-5 will only send commands with class byte = '0X' or '8X' and will explicitly select the USIM application. A 2G ME of
Rel-4 (or earlier) without USIM support will only send commands with class byte = 'A0' and then implicitly select the SIM
application.
The application selection takes place regardless of the result of the command (i.e. command successful or not).

 Accessing files under MF Accessing files under a specific ADF

File Access Yes No

Package JavaCard sim.access None 2G Applet

Access Condition 2G None

File Access Yes Yes

Package JavaCard uicc.access uicc.access 3G Applet

Access Condition 3G 3G

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 73

In case a USIM session has been activated, it excludes the possibility to activate a SIM session. In particular, this implies
that once a USIM application is activated, all commands sent to the USIM with “CLA = 0xA0” shall return, to the
terminal, the Status Words “0x6E00” (class not supported).

A toolkit applet can be triggered whatever SIM or USIM application is the current NAA.
Applets can access to any ADF independently from the current NAA and from the current card session.

11.10 SIM and USIM APIs interworking
It’s declared as not specified, and so it is not interoperable, applet behavior in case of usage of both SIM APIs and USIM
APIs.

It is recommended to develop application by using USIM APIs also in case of 2G functionalities, in order to take
advantage of all the enhanced features of the USIM APIs.

11.10.1 Terminal Profile

The terminal profile info provided by the ME are given to 2G applet in the MEProfile object and to the 3G applets in

the TerminalProfile object. Both objects have the same content.
As many features have been made mandatory for 3G ME, the relevant bits in the Terminal Profile are set to 1 in 102
223. When a 3G card is inserted in a 2G terminal, the bit verification of these features should be checked according to

51.014 also by 3G applets.

11.10.2 Triggering and Registration

The 2G applets and the 3G applets are not triggered on the same “Toolkit Interface”. The SAT ones are triggered on

sim.toolkit.ToolkitInterface. The USAT applets are triggered on

uicc.toolkit.ToolkitInterface. The triggering order for applets will only depends on the priority level
defined during the loading stage of the applet, independently of the applet type.
When a USIM is the current application or when there is no application selected, the SIM Toolkit Framework generates

events based on APDUs defined in TS 102 221 and TS 31.102 in order to trigger an applet.

Example
ENVELOPE (MENU SELECTION) defined in TS 102 223 with class byte 0x80 should trigger SAT applets registered
to EVENT_SELECTION_MENU).

2G and 3G applets share the same card resources.

Example

As an example, if a USAT applet is registered to Call Control, an applet using SIM API can not be registered on
Call Control. Moreover, if a Timer is allocated with a SIM API, it can not be allocated with a USIM API.

11.10.3 System handlers and proactive commands

The EnvelopeResponseHandler is available for all triggered applets (SAT and USAT) when available for the event. An
envelope response or a sent proactive command, using specific applet API, has to be posted by the applet.

Also, the ProactiveHandler may not be available, for SAT and USAT applets, if a proactive command is pending (see TS
43.019, TS 102 241 and TS 31.130).

Note
The system proactive commands generated by the Toolkit Framework are independent of the current NAA.

The only exception is identified for the SET UP MENU proactive command. In fact two EFSUME files can be created (one
under DFGSM and one under DFTELECOM) and can be different (alpha and icon identifiers). The Toolkit Framework

generates the same SET UP MENU proactive command if files are mapped (see § 9.6.3)

11.10.4 Behaviours of SIM API used in a 3G mode

Developer tip

SAT Applets can access to the functions and data described in TS 51.011 and TS 11.14, if the current application
is the SIM one.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 74

New features defined for proactive commands in TS 31.111 are not available for SAT applets. Moreover, new events
introduced in UICC/USAT API are not available for SAT applets (e.g.

EVENT_DOWNLOAD_DISPLAY_PARAMETER_CHANGE, EVENT_EXTERNAL_FILE_UPDATE).

11.11 Behaviours of USIM API used in 2G mode
There is no restriction concerning USIM API in 2G mode as they were designed in the interworking view.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 75

12 SMS PP and CB Packets for USIM Applications

USIM application offers Short Message Services. This chapter defines the protocol for Short Message Service in Point to
Point and Cell Broadcast mode, for single and multiple messages. It also introduces mean to handle Short Message
within USAT.

This mechanism can be used to trigger a toolkit application or to manage the card remotely.

12.1 Single Short Message Point to Point Description

12.1.1 General structure of Single Short Message Point to Point Envelope

The 3GPP TS 23.040 specifies the protocols and protocol layering for Short Message Service, within GSM/UMTS.
The ETSI TS 102 225 specifies the structure of Secured Packet in a general format (TP_UD fields) for UICC platforms.
The 3GPP TS 31.115 specifies the structure of Secure Packets for USIM Toolkit Applications.

Figure 7 – Formatted SM structure

If the incoming message is secured then we speak of formatted Short Message. Otherwise the term is unformatted.

Tag
(1)

BER Tag
(1)

Length
(1)

Source
(1)

Destination
(1)

Tag
(1)

Length
(1)

TON/NPI
(1)

SCA
(1 - 10)

Length
(1 or 2)

Device Identity TLV
(4)

Address TLV (Optional)
(4 - 13)

SMS TPDU TLV
(15 - 166)

Tag
(1)

Length
(1 or 2)

SMS TPDU

TP - MTI,
TP - UDHI...

(1)

Address
Length
(1)

Address
Value
(0 - 10)

TON/NPI

(1)

TP - PID

(1)

TP - DCS

(1)

TP - SCTS

(7)

TP - UDL

(1)

TP - UD

23 bytes: Header 23.040 140 bytes: 31.115

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 76

12.1.2 General structure of the User Data Header in a Secured Single Short Message
Point to Point

If the incoming SMS PP is secured, the coding of the SMS_DELIVER (SC to MS), SMS_DELIVER_REPORT, SMS_SUBMIT
(MS to SC), SMS_SUBMIT_REPORT header must indicate that:

• Secured data are binary (8 bits). For that the DCS (Data Coding Scheme) field should be set appropriately to
0x16 or to 0xF6 (see for details 3GPP TS 23.038).

• TP-User-Data field contains a header, in particular a 3GPP TS 31.115 header. For that the TP_UDHI (User Data
Header Indicator) bit field, in the MTI (Message-Type-Indicator) field, is set to 1.

The User Data Header is part of the TP User Data of the Short Message element.

Structure of the UDH in an SM-PP:

U D L U D H L I E I a I E D a I E I b I E I n I E D L n I E D n SM (8-bit data)

Byte Boundary Total Number of Bytes

Length Indicator

Total Number of Bytes

Length Indicator

Bytes Bytes

I E I D L a

Figure 8 - The UDH in an SM-PP

The Command Packet and the Response Packet are partially mapped into the UDH structure.
Information Element Identifier (IEI’s) value range ’70-7F’ are reserved in TS 23.040:
 ‘70’ and ‘71’ are specified below,

 ‘72’ –‘7D’ are reserved for future use,
 ‘7E’ and ‘7F’ are proprietary implementations.

If Command Packet and Response Packet are too large to be contained in a single Short Message (including the
Command Header or the Response Header), it shall be concatenated as defined below.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 77

12.2 Structure of the Command Packet contained in a single secured SM
PP or in a Formatted SM

12.2.1 Structure of the UDH in the case of Command Packet

For Command Packet, the UDH is defined as following:

Figure 9 - The UDH structure

The UDH is mapped with the Command Packet Identifier. The CPI identifies the Command Packet and indicates the
presence of the Command Packet Length and the Command Header before the Secured Data.

• The UDHL = “02”,
• The CPI (or IEIa) = “70”,
• The IEDLa = “00” accordingly with TS 23.040.

Developer tip

When sending a SMS SUBMIT, the applet developer should take care with the length of the secured data, as the
length of the Command Packet cannot exceed 140 octets. If the length of the Command packet is greater than
140 octets, then the secured data should be concatenated (see Command Packet contained in Concatenated

Short Message Point to Point chapter).

 Command Packet

UDHL
(1)

IEIa
(1)

IEDLa
(1)

CPL
(2)

CHL
(1)

KIc
(1)

SPI
(2)

KID
(1)

TAR
(3)

CNTR
(5)

PCNTR
(1)

RC/CC/DS
(0, 4 or 8)

Secured Data

UDH

02h 70h 00h

Command Header

0Dh, 11h or 15h Optional

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 78

12.2.2 Structure of the Command Packet

Command Packet structure definition:

Element Length Comment

Command Packet Identifier (CPI) 1 octet Identifies that this data block is the secured Command
Packet.

Command Packet Length (CPL) 2 octets This shall indicate the number of octets from and including
the Command Header Identifier to the end of the Secured
Data, including any padding octets required for ciphering.

Command Header Identifier (CHI) Null field Null field for SMS-PP.

Command Header Length (CHL) 1 octet This shall indicate the number of octets from and including
the SPI to the end of the RC/CC/DS.

Security Parameter Indicator (SPI) 2 octets See detailed below

Ciphering Key Identifier (KIc) 1 octet Key and algorithm Identifier for ciphering. See detail below

Key Identifier (KID) 1 octet Key and algorithm Identifier for RC/CC/DS. See detail
below

Toolkit Application Reference (TAR) 3 octets Coding is application dependent as defined in TS 101.220.

Counter (CNTR) 5 octets Replay detection and Sequence Integrity counter.

Padding Counter (PCNTR) 1 octet This indicates the number of padding octets used for
ciphering at the end of the secured data.

Redundancy Check (RC),
Cryptographic Checksum (CC) or
Digital Signature (DS)

variable Length depends on the algorithm. A typical value is 8
octets if used, and for a DS could be 48 or more octets; the
minimum should be 4 octets if used.

Secured data variable Contains the Secured Application Message and possibly
padding octets used for ciphering.

12.2.2.1.1 SPI: Security Parameter Indicator

These two bytes defined the security level applied to the input and output message.

If the Security Parameter Indicator (SPI) field indicates that a particular field is not present, then the Sending Entity set

the content of this field to zero, and the Receiving Entity ignore it.

If the Security Parameter Indicator (SPI) field indicates that no RC, CC or DS is present in the Command Header, the
RC/CC/DS field is not present.

If the Security Parameter Indicator indicates that RC/CC/DS is performed, then the following Command Header fields are
included in the calculation:

• SPI field,
• Kic field,
• KID field,
• TAR field,

• Counter field,
• Padding Counter field,

• Secured data field.

If the Security Parameter Indicator indicates that ciphering is performed, then the following Command Header fields are

included in the calculation:
• Counter field,

• Padding Counter field,
• RC/CC/DS field computed,

• Secured Data.

If ciphering is performed, first the RC/CC/DS is calculated, and then ciphering is applied.
If the Padding Counter content is zero, this indicates no padding octets, or no padding is necessary.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 79

For more details on the SPI coding, see Secured Packet Security Parameters Description chapter.

12.2.2.1.2 KIC: Ciphering parameters

This field defines the key set and algorithm to use for encryption and decryption.
For more details see Secured Packet Security Parameters Description chapter.

12.2.2.1.3 KID: Signature parameters

This field defines the key set and algorithm to use for Cryptographic Checksum and Redundancy check.
For more details see Secured Packet Security Parameters Description chapter.

12.2.2.1.4 TAR: Toolkit Application Reference

TAR allows to uniquely identify application loaded on card (first level applications: GSM application, Remote file
application, USIM application… and second level applications: Toolkit applet), and cannot be duplicated.

A second level application can have several TAR assigned.

The TAR of an application is coded on 3 bytes, and the range values are defined by ETSI Technical Body:
The TAR values in the range '00 00 00' to 'AF FF FF' and 'C0 00 00' to 'FF FF FF' are under the responsibility of the first
level application issuer.
The TAR values in the range 'B0 00 00' to 'BF FF FF' are reserved for allocation by ETSI to generic second level
application independent of the first level application issuer.

Toolkit application reference Application category

'00 00 00' Issuer security domain

'00 00 01' to 'AF FF FF' Allocated by the 1st level application issuer

'B0 00 00' to 'B0 FF FF' Remote File Management

'B1 00 00' to 'B1 FF FF' Payment application

'B2 00 00' to 'BF FE FF' RFU

'BF FF 00' to 'BF FF FF' Proprietary toolkit application

'C0 00 00' to 'FF FF FF' Allocated by the 1st level application issuer

It is not mandatory for a second level application to have a TAR value assigned. In this case it is not possible to trigger

such application on a Formatted Short message.

If a TAR value is assigned to a second level application it is not mandatory to be included in the AID.

Interoperability issue:
It’s not specified if the TAR inside the AID is assigned to an application if no toolkit parameter is specified for that
application.

12.2.2.1.5 Counter field:

The counter detects message replay and checks message sequence integrity. The anti replay level and integrity check
level are defined in the SPI2 byte.
For more details see Secured Packet Security Parameters Description chapter.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 80

12.3 Structure of a Response Packet contained in a Single Short
Message Point to Point

The Response Packet is generated by the Receiving Entity, and can contain some data returned by the Receiving

Application.

In the case where the USIM application is the receiving application, according the value of the bit 6 of the SPI2, the

Response packet is:
• Retrieved by the ME, and included in the User-Data part of the SMS-DELIVER-REPORT,

• Fetched by the ME after the Send Short message proactive command

12.3.1 Structure of the UDH in case of Response Packet

In the case of a response packet originating from the SIM, the UDHI bit of the response packet SMS is not set, since the
SIM cannot notify the ME that it should be set. The sending entity processes the response packet as if the UDHI bit were
set.

Figure 10 – Response packet structure

The UDH is mapped with the Response Packet Identifier. The RPI identifies the Response Packet and indicates the
presence of the Response Packet Length and the Response Header before the Secured Data.

• UDHL = “02”,
• RPI (or IEIa) = “71”,

• and the IEDLa = “00” accordingly with TS 23.040.

Applet developer tips:

The applet developer should take care with the length of the additional response data, as the length of the
Response Packet cannot exceed 140 octets. If the length of the Response Packet is greater than 140 octets, the
additional response data should be concatenated (see Response Packet contained in Concatenated Short Message
Point to Point chapter).

12.3.2 Structure of the Response Packet

 Response Packet

UDHL
(1)

IEIa
(1)

IEDLa
(1)

RPL
(2)

RHL
(1)

TAR
(3)

CNTR
(5)

PCNTR
(1)

RC/CC
(0, 4 or 8)

Additional Response Data

UDH

02h 71h 00h

Response Header

0Ah, 0Eh or 12h condition
al

Status
(1)

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 81

Element Length Comment

Response Packet Identifier (RPI) 1 octet Identifies a response packet.

Response Packet Length (RPL) 2 octets Indicates the number of bytes from and including the RHI to the
end of the additional response data, including any padding bytes.

Response Header Identifier (RHI) Null field for SMS-PP.

 Response Header Length (RHL) 1 octet Indicates the number of bytes from and including the RC/CC/DS
to the end of the response status code byte.

Toolkit Application Reference (TAR) 3 bytes It is a copy of the contents of the TAR in the command packet.

Counter (CNTR) 5 bytes It is a copy of the contents of the CNTR in the command packet.

Padding Counter (PCNTR) 1 byte Indicates the number of padding bytes at the end of the additional
response data.

Response Status Code Byte 1 byte Coding defined below.

Redundancy Check (RC), Cryptographic
Checksum (CC) or Digital Signature (DS)

Variable Length depending on the algorithm indicated in the command
header in the incoming message. A typical value is between four
and eight bytes, or zero if no RC/CC/DS is requested.

Additional Response Data Variable Optional application specific response data, including padding
bytes if required.

If the SPI byte 2 of the incoming message indicates that RC, CC or DS is performed on Response Packet, the fields
included are:

• TAR field,

• Counter field,
• Padding Counter field,

• Status Code field,
• Additional Response data field.

RPI, RPL, RHI and RHL may be implemented for the signature computation.

If the SPI byte 2 of the incoming message indicates that cipher is applied on Response Packet, the fields included are:
• Counter field,
• Padding Counter field,

• Status Code field,
• RC/CC/DS field computed,

• Additional Response data field.

If ciphering is performed, first the RC/CC/DS is calculated, and then ciphering is applied.
If the SPI byte 2 of the incoming message indicates that a specific field is unused, then the content field is set to zero.
If the SPI byte 2 of the incoming message indicates that no RC; CC or DS is used, then the field is not present.
If the Padding Counter content is zero, this indicates no padding octets, or no padding is necessary.

12.3.2.1.1 TAR: Toolkit Application Reference.

The TAR is the same as the one defined in the incoming Formatted Message and is automatically provided by the
framework.

12.3.2.1.2 CNTR: Counter.

The CNTR is the same as the one defined in the incoming formatted message and is automatically provided by the
framework.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 82

12.3.2.1.3 Response Status Code

This information is automatically provided by the framework in the event of an error in the incoming Formatted Message.

The value of this byte is defined in the following table.

12.4 Structure of the Single Short Message Point to Point throw the
USIM API

There are two ways for card to receive a single Short Message Point to Point: through an ENVELOPE

(SMS_PP_DOWNLOAD) APDU, or through an UPATE_RECORD EFSMS APDU.

The received message can be:
• Formatted accordingly to identify explicitly a toolkit application (see chapter Structure of the Command Packet)

• Unformatted and send data to all registered toolkit application.

12.4.1 TLV structure for Envelopes (SMS-PP DOWNLOAD)

APDU Command: 80 C2 00 00 Length

Data Buffer:

Status Code Meaning

00h PoR correct.

01h RC/CC/DS failed.

02h CNTR low.

03h CNTR high.

04h CNTR blocked

05h Encryption error.

06h Unidentified security error. This code occurs when the receiving entity cannot correctly interpret the
command header, and the response packet is sent unencrypted with no RC/CC/DS.

07h Insufficient memory to process the incoming message.

The meaning of this status code depends on the card manufacturer.

08h This more time status code should be used if the receiving entity/application needs more time to process the
command packet due to time constraints. In this case, a later response packet should be returned to the
sending entity once processing has been completed.

09h TAR unknown

0Ah Insufficient security level

0B h Actual response data to be sent using SMS-SUBMIT

0Ch - FFh Reserved for future use.

Tag Length Device Identities TS-SCA 3GPP-SMS TPDU (DELIVER)

D1 XX Tag Length Src Dst Tag Length Val Tag Length 23.40 TPUD

 82 02 83 81 06 XX …. 8B XX TPUDL 31.115 Data

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 83

When receiving an envelope APDU containing an formatted SMS_DOWLOAD, the USIM Toolkit Framework:

• Verifies the security of the short message,

• Triggers the toolkit applet registered to EVENT_FORMATTED_SMS_PP_ENV, and with corresponding
TAR,

• Takes the optional Application Data posted by the triggered toolkit application if present,
• Secures and sends response packet using SMS-DELIVER-REPORT or SMS-SUBMIT according the SPI

byte 2
When the applet is triggered, the data of short message in the TLV structure are deciphered.

When receiving an envelope APDU containing an Unformatted SMS_DATADOWNLOAD BER simple TLV, the USIM Toolkit

Framework triggers all the toolkit applications registered to the EVENT_UNFORMATTED_SMS_PP_ENV.

12.4.2 TLV structure for Update EFSMS APDU:

APDU Command: 0X DC 00 02 Length (see TS 102 221)

Data Buffer:

Status TS-SCA 3GPP SMS TPDU (DELIVER)

03 Length TON Value 23.40 TPUD

 no. of bytes TPUDL 31.115 Data

When receiving a formatted UPDATE RECORD EFSMS, the USIM Toolkit Framework:

• Updates the EFSMS file with the data received; it is then up to the receiving toolkit applet to change the SMS

stored in the file, if the applet has the access right,
• Verifies the security of the Short Message,

• Triggers the toolkit applet registered to EVENT_FORMATTED_SMS_PP_UPD and with corresponding TAR.
• Converts the Update Record EFSMS into a TLV List:

12.4.3 Structure of the USAT EnvelopeHandler

Tag Length Device Identities TS-SCA 3GPP SMS TPDU (DELIVER)

D1 XX Tag Length Rcd No Status Tag Length Value Tag Length 23.40 TPUD

 82 02 Absolute
record nb

 86 XX …. 8B XX TPUDL 23.048 Data

In the Device Identities field, record number is absolute, so that the applet can update EFSMS in absolute mode (e.g. a
readable text).

In the TS-SCA field, the value of the TS-Service-Centre-Address is the one of the last Update Record EFSMS

If the EFSMS file updated is under an ADF file, then an AID TLV can be added in the USAT EnvelopeHandler. The
value of the AID TLV, is the AID of the ADF:

AID

Tag Length Value

AF XX ADF AID

The order of the TLV in the EnvelopeHandler is not specified.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 84

The USAT EnvelopeHandler, handlers by the toolkit applet returns

• The BTAG_SMS_PP_DOWNLOAD to the getEnvelopeTag method,

• the length of the TLV structure defined above to the getLength method.

When receiving an Unformatted UPDATE RECORD EFSMS, the USIM Toolkit Framework:

• Updates the EFSMS file with the data received;
• Convert the UPDATE RECORD EFSMS APDU data into a TLV list as described for formatted Update Record,

• Trigger all toolkit applications registered to the EVENT_UNFORMATTED_SMS_PP_UPD.

12.5 Concatenated Short Message Point to Point Description

12.5.1 General structure of Concatenated Short Message Point to Point Envelope

The envelope structure of the SMS-TPDU is the same as for Single Short Message (see General structure of Single Short
Message Point to Point Envelope Chapter).

Nevertheless, the TP element in the SMS_SUBMIT PDU, except the TP_ME, TP_SRR, TP_UDL and the TP_UD, should
present same values for each concatenated SM of a same session, otherwise this lead to irrational behavior.

The UDHI bit is set to 1 whatever the Short Message is formatted or not as there is always a User Data Header: the
concatenation control header.

12.5.2 General structure of the User Data Header in Concatenated Short Message
Point to Point

Example of concatenation of one large SM in three SM:

Figure 11 - The User Data Header in C-SM PP

TP_UDH1 Secured Data TP_UDH2 Secured Data TP_UDH Secured Data

TP_UDH Secured Data

First concatenated SM Second Concatenated SM Last Concatenated SM

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 85

SM specific
elements

Generalised Command
Packet

Comments

UDL Indicates the length of the entire SM

UDHL The first octet of the content or User Data part of the Short Message
itself. Length of the total User Data Header includes the length of IEIa +
IEIDLa + IEDa + IEIb + IEIDLb + IEDb + …

IEIa '00', indicating
concatenated short
message

Identifies this Header as a concatenation control header defined in
3GPP TS 23.040.

IEIDLa Length of Concatenation
header

Length of the concatenation control header (= 3).

IEDa 3 octets containing data
concerned with
concatenation

These octets contain the reference number, sequence number and total
number of messages in the sequence, as defined in 3GPP TS 23.040.

IEIb Identifies this element as the Packet Identifier.

UDH for concatenated Short Message Point to Point

The Information Element Data field contains information set by the sending entity so that the receiving entity is able to
re-assemble the short message in the correct order. The Information Element Data octets are coded as follows:

• Octet 1: Concatenated Short Message reference number: this reference number is constant within a

concatenate session
• Octet 2: Maximum number of short message in the concatenate session: indicate the total number of short

message within a concatenate session. The value is constant within a concatenate session
• Octet 3: Sequence number of the current message: indicate the sequence number of the short message within

a concatenate session.

12.5.3 Structure of the Command Packet contained in Concatenated Short Message
Point to Point

If a Command Packet is longer than 140 octets (including the Command Header), it is concatenated according to TS
23.040.

The structure of the Command Packet in a Concatenated Short Message is as defined in Structure of the Command
Packet chapter.

The first Short Message contains:

• The Concatenation Control Header, as defined above,
• And the Command Packet Identifier (CPI) in the User Data Header.

In each subsequent Short Message only the Concatenation Control Header is present. The CPI, CPL and Command
Header are not present.

First Short Message:

IEIa = ‘00’ indicates concatenate short message
IEIb = ‘70’ indicates CPI

IEILb IEILa UDHL IEIa IEIDa IEIb SM

Concatenation Header Control Command Packet Identifier

‘07’ ‘00’ ‘03’ Seq nb, Ref nb, Nb SM ‘70’ ‘00’ CPL CHI CHL CH SD

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 86

Following Short Messages:

If data is ciphered, then they are ciphered before being split into individual concatenated Short Message. The
Concatenation Control Header of the UDH in each Short Message is not ciphered.

The CPL fields and the CHL field are included in the RC/CC/DS calculation if used.

12.5.4 Structure of the Response Packet contained in Concatenated Short Message
Point to Point

If a Response Packet is longer than 140 octets (including the Response Header), it is concatenated according to TS

23.040.

The structure of the Response Packet in a Concatenated Short Message is as defined in Structure of the Response
Packet chapter.

The first Short Message contains:

• The Concatenation Control Header, as defined in General Structure of the User Data Header in Concatenated

Short Message Point to Point chapter,
• And the Response Packet Identifier (RPI) in the User Data Header.

In each subsequent Short Message only the Concatenation Control Header is present. The RPI, RPL and Response

Header are not present.

First Short Message:

IEIa = ‘00’ indicates concatenate short message
IEIb = ‘71’ indicates RPI

Following Short Messages:

IEILb IEILa UDHL IEIa IEIDa IEIb SM

Concatenation Header Control Command Packet Identifier

‘07’ ‘00’ ‘03’ Seq nb, Ref nb, Nb SM ‘71’ ‘00’ RPL RHI RHL RH SD

IEILa UDHL IEIa IEIDa SD

Concatenation Header Control

‘05’ ‘00’ ‘03’ Seq nb, Ref nb, Nb SM SD

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 87

If data is ciphered, then they are ciphered before being split into individual concatenated Short Message. The

Concatenation Control Header of the UDH in each Short Message is not ciphered.

The RPL fields and the RHL field are included in the RC/CC/DS calculation if used.

12.5.5 Structure of the Concatenated Short Message Point to Point throw the USIM
API

As for single Short Message, it is possible for card to receive multiple short messages via an ENVELOPE
(SMS_PP_DOWNLOAD) APDU, or via an UPATE_RECORD EFSMS APDU.
The received message can be:

• Formatted accordingly to identify explicitly a toolkit application (see chapter Structure of the Command Packet)
and send the data to it

• Unformatted and send data to all registered toolkit application.

12.6 TLV structure for Envelopes (SMS-PP DOWNLOAD)
When Short Message are received concatenated, the USIM Toolkit framework re-assembles the original message before
any further processing, and places in one SMS TPDU TLV (with TP-UDL field coded on one byte) included in the USAT

EnvelopeHandler. The concatenation control headers used to re-assemble the short messages in the correct order
are not present in the SMS TPDU.
The TP-elements of the SMS TPDU and the Address (TS-Service-Centre-Address) correspond to the ones in the last
received Short Message (independently of the Sequence number of Information-Element-Data).

The minimum requirement for the USIM Toolkit Framework is to process a concatenated short message with the

following properties:

• The Information Element Identifier is equal to the 8-bit reference number.
• It contains uncompressed 8 bit data and additionally the DCS shall be set to ‘Class 2’.

12.6.1 Formatted Short Message

In the case of envelope formatted short message, the USIM Toolkit framework:

• Verifies the security of the Short Message
• Re-assemble all the Short Message

• Trigger toolkit application registered to the EVENT_FORMATTED_SMS_PP_ENV, with the corresponding TAR,

When the toolkit applet is triggered, message data are deciphered though the USATEnvelopeHandler.

IEILa UDHL IEIa IEIDa SD

Concatenation Header Control

‘0’5 ‘00’ ‘03’ Seq nb, Ref nb, Nb SM SD

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 88

Structure of the USATEnvelopeHandler

Figure 12 - The USAT Envelope Handler content in case of Formatted SM

12.6.1.1.1 Unformatted Short Message

After reassembles appropriately the different short message, the USIM toolkit framework trigger all applets registered to
the EVENT_UNFORMATTED_SMS_PP_ENV.

Structure of the USATEnvelopeHandler

Tag Length Device Identities TS-SCA 3GPP-SMS TPDU (DELIVER)

D1 XX Tag Length Src Dst Tag Length Val Tag Length 23.40 TPUD

 82 02 83 81 06 XX …. 8B XX TPUDL 31.115 Deciphered Data

TPUD

UDHL

IEIa
(CPI)

IEIDL
a

CPL

CHL

SPI

Kic

KID

TAR

CNTR

PCNTR

RC/CC/
DS

SMS 1

…

SMS n

Tag Length Device Identities TS-SCA 3GPP-SMS TPDU (DELIVER)

D1 XX Tag Length Src Dst Tag Length Val Tag Length 23.40 TPUD

 82 02 83 81 06 XX …. 8B XX TPUDL User Data

UDHL

SMS 1

…

SMS n

 00

First SMS

Last SMS

First SMS

Last SMS

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 89

12.6.2 TLV structure for Update Record

When formatted concatenated Short Message are sent via Update Record EFSMS APDU, the USIM Toolkit framework:

• Updates the EFSMS file with the data received,

• Verifies the security of the short message,
• Triggers the toolkit applet registered to EVENT_FORMATTED_SMS_PP_UPD and with corresponding TAR,
• Converts the Update Record EFSMS into a TLV List:

Structure of the USATEnvelopeHandler

Tag Length Device Identities TS-SCA 3GPP SMS TPDU (DELIVER)

D1 XX Tag Length Rcd No Status Tag Length Value Tag Length 23.40 TPUD

 82 02 Absolute
record nb

 86 XX …. 8B XX TPUDL 31.115 Data

In the Device Identities field, Absolute Record Number and Record Status correspond to the last Update Record EFSMS
APDU received.
In the TS-SCA, fields correspond to the last Update Record EFSMS APDU received.

An AID TLV can be present in the structure of the USAT, if EFSMS file is under an ADF. The value of AID TLV is the AID of

the ADF.

AID

Tag Length Value

AF XX ADF AID

When receiving an unformatted UPDATE RECORD EFSMS, the USIM Toolkit Framework:

• Updates the EFSMS file with the data received;

• Converts the UPDATE RECORD EFSMS APDU data into a TLV list as described for formatted Update Record,

• Triggers all toolkit applications registered to the EVENT_UNFORMATTED_SMS_PP_UPD.

12.6.3 Methods to retrieve UDL

To retrieve the length of the User Data, the getUserDataLength method must be used, as the value indicated in

the TP-UDL field of the USAT EnvelopeHandler correspond at the last concatenated Short Message received. The

getUserDataLength method will return the length from the UDHL to the last byte of the deciphered data.

12.7 Concatenated SMS and Interoperability issues
• The API handling of outgoing concatenated SMS is not standardized. Therefore it is up to the application to

manage the sending of outgoing concatenated SMS.

• When the card is about to receive a concatenated SMS, which has not been entirely received, and the card

receives during this process a concatenated SMS with a different reference number, and then the cards of the

SIM Alliance members react differently, they are not interoperable at this point.

• The SIM Alliance members have set up different mechanisms in order to allocate space for concatenated SMS in

memory. Therefore interoperability cannot be guaranteed for the method to allocate memory space for

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 90

concatenated SMS. Nevertheless the SIM Alliance members guarantee that there are means available on each
card to reserve a minimum memory space for the reception of concatenated SMS.

12.8 Short Message Cell Broadcast Description

12.8.1 Structure of the CBS page in the SMS-CB Message

The CBS page sent to the MS by the BTS (Base Transceiver Station) is a fixed block of 88 octets as coded in GSM

24.012. The 88 octets of CBS information consist of a 6-octet header and 82 user octets.
The 6-octet header is used to indicate the message content as defined in 3GPP TS 23.041. This header is required to be

transmitted unsecured in order for the ME to handle the message in the correct manner (e.g. interpretation of the DCS).
General structure

Figure 13 - The CBS pages

12.8.2 Cell Broadcast Page Parameters

Octet Number(s) Field

1-2 Serial Number

3-4 Message Identifier

5 Data Coding Scheme

6 Page Parameter

7-88 Content of Message

12.8.2.1.1 Serial Number

This parameter is a 16-bit integer, which identifies a particular CBS message (which may be one to fifteen pages in
length) from the source and type indicated by the Message Identifier and is altered every time the CBS message with a
given Message Identifier is changed. For more detail refer to 3GPP TS 23.041.

12.8.2.1.2 Message Identifier

This parameter identifies the source and type of the CBS message. A number of CBS messages may originate from the
same source and/or be of the same type. These will be distinguished by the Serial Number. The Message Identifier is
coded in binary.

The ME shall attempt to receive the CBS messages whose Message Identifiers are in the "search list". This "search list"
shall contain the Message Identifiers stored in the EFCBMI, EFCBMID and EFCBMIR files on the SIM and any Message

Identifiers stored in the ME in a "list of CBS messages to be received". If the ME has restricted capabilities with respect
to the number of Message Identifiers it can search for, the Message Identifiers stored in the SIM shall take priority over

any stored in the ME.
For SMS CB Message, the Message Identifier use the range:

BER Tag
(1)

Length
(1 or 2)

Device Identity TLV
(4)

Cell Broadcast Page

Cell Broadcast Page

(3-90)

3GPP TS 23.040 3GPP TS 23.041

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 91

1000 - 107F (hex): for Cell Broadcast Data Download in "clear" (i.e. unsecured) to the USIM (see 3GPP
TS 31.111). If a message Identifier from this range is in the "search list", the ME shall
attempt to receive this CBS message.

1080 – 10FF (hex): for Cell Broadcast Data Download secured according to 3GPP TS 31.115 to the SIM (see 3GPP
TS 31.111). If a message Identifier from this range is in the "search list", the ME shall

attempt to receive this CBS message.

12.8.2.1.3 Data Coding Scheme

This parameter indicates the intended handling of the CBS message at the MS, the alphabet/coding, and the language
(when applicable). This is defined in 3GPP TS 23.038.

12.8.2.1.4 Page Parameter

This parameter is coded as two 4-bit fields. The first field (bits 0-3) indicates the binary value of the total number of
pages in the CBS message and the second field (bits 4-7) indicates binary the page number within that sequence. The

coding starts at 0001, with 0000 reserved. If a mobile receives the code 0000 in either the first field or the second field
then it shall treat the CBS message exactly the same as a CBS message with page parameter 0001 0001 (i.e. a single

page message).

12.8.2.1.5 Content of Message

This parameter is a copy of the 'CBS-Message-Information-Page' as sent from the CBC (Cell Broadcast Centre) to the
BSC (Base Station Controller).
The content of the message is secured as defined in this document.

12.8.3 A Command Packet contained in a SMS-CB message

The relationship between the Command Packet and its inclusion in the SMS-CB message structure is indicated in the

table above.

Command Packet in CBS page of an SMS-CB message:

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 92

SMS-CB
specific
elements

Generalised Command
Packet Elements

Comments

SN Refer to 3GPP TS 23.041. Coded on 2 octets containing the ID of a
particular message.

MID CPI='1080' to '109F' Coded on 2 octets containing the source and type of the message. The
Command Packet Identifier range is reserved in 3GPP TS 23.041. (see
note)

DCS Refer to 3GPP TS 23.041. Coded on 1 octet containing the alphabet
coding and language as defined in GSM 23.038.

PP Refer to 3GPP TS 23.041. Coded on 1 octet to indicate the page
number and total number of pages.

Content of
Message

CPL Length of the Command Packet, coded over 2 octets, and shall not be
coded according to ISO/IEC 7816-6.

 CHI The Command Header Identifier. Null field.

 CHL This shall indicate the number of octets from and including the SPI to
the end of the RC/CC/DS field. Binary coded over 1 octet.

 SPI to RC/CC/DS in the
Command Header

The remainder of the Command Header.

 Secured Data Application Message, including possible padding octets.

NOTE: Generally, the CPI is coded on 1 octet, as specified in Structure of Command Packet Chapter. However,

the CPI for the SMS-CB message is coded on 2 octets as the values reserved in 3GPP TS 23.041 to identify
the Command Packet are MID values which are coded on 2 octets.

12.8.4 Structure of the Response Packet for a SMS-CB Message

As there is no response mechanism defined for SMS-CB, there is no defined structure for the (Secured) Response

Packet.
However, if a (Secured) Response Packet is sent via another bearer the structure shall be defined by the Receiving

Application.

12.8.5 Structure of Short Message Cell Broadcast throw the USIM API

A received Cell Broadcast Message, via en ENVELOPE (CELL BROASCAST DOWNLOAD) APDU can be either:
• Formatted according Command Packet contained in a SMS-CB message chapter,
• Unformatted.

12.8.5.1.1 Formatted Short Message Cell Broadcast (1 Page):

When the card receives a formatted Short Message Cell Broadcast page, the USIM Toolkit application:
• Verifies the security of the message,

• Triggers the toolkit applet registered to EVENT_FORMATTED_SMS_CB, with the corresponding TAR.

Structure of the USATEnvelopeHandler:

Note: data are deciphered, as it is required in 3GPP TS 31.115.

Tag Len Device Identities Cell Broadcast Page 3GPP TS 31.115

D2 xx Tag Len Src Ds

t

Tag Len SN MI DCS PP CPL CHL SPI to

RC/CC/DS

Secured data

(note1)

 82 02 83 81 8C xx xx xx 10 80 56 00

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 93

12.8.5.1.2 Unformatted Short Message Cell Broadcast (1 Page):

When the card receives an unformatted Short Message Cell Broadcast page, the USIM Toolkit application triggers all

toolkit applets registered to EVENT_UNFORMATTED_SMS_CB.

Structure of the USATEnvelopeHandler:

12.9 Multiple Short Message Cell Broadcast Description

It is possible to send more than 82 octets with Short Message CBC. The Command Packet is then split over a sequence
of SMS_CB pages.

Header Header Header CH

CH Secured Data Padding

First CBS page in the sequence Second CBS page Third and final CBS page

In the above figure, Header = 6 Octet header as defined in TS 23.041 [6] (i.e. SN, MID, DCS and PP) and

CH = Command Header includes here the CPL, CHL, SPI to RC/CC/DS.

Figure 14 - CBS structure with Secured Data

Securing of the complete CBS message is done by the Sending Entity. The Secured CBS message is formatted in
accordance with 3GPP TS 31.115 and transmitted to the MS as CBS pages. The CBS pages are received by the ME and

sent directly to the USIM Toolkit Application, by analyzing the MID value.

12.9.1 Structure of Multiple Short Messages Cell Broadcast throw the USIM API

When the Cell Broadcast Message is received as multiple pages, the USIM Toolkit application reassembles the global
message before any further processing.

12.9.1.1.1 Formatted Multiple Short Message Cell Broadcast:

When the card receives formatted multiple Short Message Cell Broadcast, the Toolkit:
• Verifies the security of the message,

• Decrypts the message,

• Triggers the toolkit applet registered to EVENT_FORMATTED_SMS_CB, with the corresponding TAR.

Tag Len Device Identities Cell Broadcast Page

D2 xx Tag Len Src Ds

t

Tag Len SN MI DCS PP data

 82 02 83 81 8C xx xx xx 10 00 56 00

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 94

Structure of the USATEnvelopeHandler:

Figure 15 – USAT Envelope Handler in case of formatted CB

12.9.1.1.2 Unformatted Multiple Short Message Cell Broadcast:

When the card receives unformatted multiple Short Message Cell Broadcast, the USIM Toolkit application triggers all
toolkit applets registered to EVENT_UNFORMATTED_SMS_CB.

Structure of the USAT Envelope Handler:

Figure 16 – USAT Envelope Handler in case of unformatted CB

Tag Len Device Identities Cell Broadcast Page 3GPP TS 31.115

D2 xx Tag Len Src Ds

t

Tag Len SN MI DCS PP CPL CHL SPI to

RC/CC/DS

Secured data

 82 02 83 81 8C xx xx xx 10 80 56 22 Sm1 … Sm n

Tag Len Device Identities Cell Broadcast Page

D2 xx Tag Len Src Ds

t

Tag Len SN MI DCS PP data

 82 02 83 81 8C xx xx xx 10 00 56 00 Sm1 … Sm

n

First SM CB

Last SM CB

First SM CB

Last SM CB

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 95

13 Security Parameters Description for Secure Packets

13.1 Coding of the SPI: Security Parameter Indicator
These two bytes defined the security level applied to the input and output message. This includes whether counter
verification and a PoR (Proof of Receipt) are required along with the associated security level.

If the SPI indicates that a specific field is unused, the Sending Entity shall set the contents of this field to zero, and the
Receiving Entity shall ignore the contents.

If the SPI indicates that no RC, CC or DS is present in the Command Header, the RC/CC/DS field shall be of zero length.

First Octet:

 b8 b7 b6 b5 b4 B3 b2 b1

 00: No RC, CC or DS
01: Redundancy Check

10: Cryptographic Checksum
11: Digital Signature

0 : No Ciphering
1 : Ciphering

00: No counter available (note 1)

01: Counter available; no replay or sequence
 checking (note 2)
10: Process if and only if counter value is higher
 than the value in the RE (note 3)
11: Process if and only if counter value is one

 higher than the value in the RE (note 4)

Reserved (set to zero and ignored by RE)

NOTE 1: In this case the counter field is present in the message.
NOTE 2: In this case the counter value is used for information purposes only, (e.g. date or time stamp). If the

Command Packet was successfully unpacked, the counter value can be forwarded from the Receiving
Entity to the Receiving Application. This depends on proprietary implementations and happens in an
application dependent way.

NOTE 3: The counter value is compared with the counter value of the last received Command Packet. This is
tolerant to failures on the transport level (i.e. losses of Command Packets). A possible scenario is a global
update.

NOTE 4: This provides strict control in addition to security indicated in note 3.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 96

Second Octet:

 B8 b7 b6 b5 b4 B3 b2 b1

 00: No PoR reply to the Sending Entity (SE)
01: PoR required to be sent to the SE

10: PoR required only when an error has occurred
11: Reserved

00: No RC, CC or DS applied to PoR response to SE
01: PoR response with simple RC applied to it
10: PoR response with CC applied to it
11: PoR response with DS applied to it

0 : PoR response shall not be ciphered
1 : PoR response shall be ciphered

Reserved for TS 31.115.

Reserved (set to zero and ignored by RE)

If RC, CC or DS is applied to the Command Packet i.e. SPI1.b2b1 is different from '00' and if RC, CC or DS is applied to
the Response Packet i.e. SPI2.b4b3 is different from ‘00’, then SPI2.b4b3 shall be set to the same value as SPI1.b2b1.

Interoperability issue

There is no definition, and so interoperability, about the Digital Signature functionality in the RC/CC/DS field.

13.1.1 Coding of the Kic field

The Kic byte indicates the algorithm and the key to be used to decrypt the Command Packet if encryption is used, and

encrypt Response Packet if specified in the bits5 of the SPI2.

The KIc is coded as below.

 B8 b7 b6 b5 b4 b3 b2 b1

 00: Algorithm known implicitly by both entities
01: DES

10: Reserved
11: proprietary Implementations

 If b2 b1 = 01 (DES), b4 b3 shall be coded as follows:
00: DES in CBC mode

01: Triple DES in outer-CBC mode using two
 different keys

10: Triple DES in outer-CBC mode using three
 different keys

11: DES in ECB mode

If b2 b1 = 10, b4 and b3 coding is reserved.

indication of Keys to be used
(keys implicitly agreed between both entities)

DES is the algorithm specified as DEA in ISO 8731-1.
DES in CBC mode is described in ISO/IEC 10116.

Triple DES in outer-CBC mode is described in clause 15.2 of ISBN 0-471-12845-7.
DES in ECB mode is described in ISO/IEC 10116.

The initial chaining value for CBC modes shall be zero.

For GlobalPlatform security architecture compliant cards see § 18.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 97

13.1.2 Coding of the KID field

KID byte indicates the algorithm and key to be used if Cryptographic Checksum or Redundancy Check has to be checked
on the Command Packet or performed on the Response Packet.

13.1.3 Coding of the KID for Cryptographic Checksum

If b2b1= '10' (Cryptographic Checksum) in the first byte of SPI, KID is coded as following:

 B8 b7 b6 b5 b4 b3 b2 b1

 00: Algorithm known implicitly by both entities

01: DES
10: Reserved
11: proprietary Implementations

 If b2 b1 = 01 (DES), b4 b3 shall be coded as follows:

00: DES in CBC mode
01: Triple DES in outer-CBC mode using two
 different keys

10: Triple DES in outer-CBC mode using three
 different keys

11: Reserved
If b2 b1 = 10, b4 and b3 coding is reserved.

indication of Keys to be used

(keys implicitly agreed between both entities)

DES is the algorithm specified as DEA in ISO 8731-1.
DES in CBC mode is described in ISO/IEC 10116.
Triple DES in outer-CBC mode is described in clause 15.2 of ISBN 0-471-12845-7.
The initial chaining value for CBC modes shall be zero.

 If padding is required, the padding octets are coded hexadecimal '00'. These octets are not be included in the secured
data.

13.1.4 Coding of the KID for Redundancy Check

If b2b1= '01' (Redundancy Check) in the first byte of SPI, KID is coded as follows:

 b8 b7 b6 b5 b4 b3 b2 b1

 00: Algorithm known implicitly by both entities
01: CRC
10: Reserved
11: proprietary Implementations

If b2b1=01 (CRC), b4b3 shall be coded as follows:
00: CRC 16

01: CRC 32
10 to 11: Reserved
If b2b1 = 10, b4 and b3 coding is reserved.

For Proprietary use or
For GlobalPlatform security architecture compliant cards:

indication of Keys to be used

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 98

CRC algorithm is specified in ISO/IEC 10239.
The generator polynomial used for CRC 16 is X^16+X^12+X^5+1.
The generator polynomial used for CRC 32 is X^32 +X^26 +X^23 +X^22 +X^16 +X^12 +X^11 +X^10 +X^8 +X^7

+X^5 +X^4 +X^2 +X +1.
The least significant bit of the first byte to be included in the checksum represents the most significant term of the input

polynomial.
The least significant term of the output polynomial represents the most significant bit of the first byte of the RC/CC/DS

field.
The initial value of the register is 'FFFF' for CRC 16 and 'FFFFFFFF' for CRC 32.

The CRC result is obtained after an XOR operation of the final register value with ‘FFFFFFFF’ for CRC 32 or 'FFFF' for CRC
16.

13.2 Counter Field and Management

If in the first SPI byte b4b5=00 (No counter available) the five byte counter must be present in the command packet,
but it is ignored by the RE and the RE does not update the counter.

If b5 of the first SPI byte is equal to 1 then the following rules shall apply to counter management, with the goal of
preventing replay and synchronization attacks:

• The SE sets the counter value. It is only incremented.
• The RE shall update the counter to its next value upon receipt of a Command Packet after the

corresponding security checks (i.e. RC/CC/DS and CNTR verification) have been passed successfully.
• The next counter value is the one received in the incoming message.

• When the counter value reaches its maximum value the counter is blocked.

If there is more than one SE, care has to be taken to ensure that the counter values remain synchronized between the
SE's to what the RE is expecting, irrespective of the transport mechanism employed.
The level of security is indicated via the proprietary interface between the Sending/Receiving Application and

Sending/Receiving Entity. Application designers should be aware that if the Sending Application requests "No RC/CC/DS"
or "Redundancy Check" and "No Counter Available" from the SE, no security is applied to the Application Message and
therefore there is an increased threat of malicious attack.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 99

14 BIP commands and events

14.1 Introduction to the Bearer Independent Protocol (BIP)

According to TS 102 223, the Bearer Independent Protocol (BIP) is a mechanism by which the terminal provides the
UICC with access to the data bearers supported by the terminal and the network. This feature enables a UICC to
establish a data channel through the handset to a remote server in the network. Depending on UICC / ME capabilities
BIP can handle up to 7 open data channels at the same time.

BIP is a set of USAT commands that defines an interface between the (U)SIM and the mobile phone for high-speed data

exchange. With an open channel command the UICC has to give information to the mobile about its preferred bearer
type (e.g. CSD, Packet Data Service or local bearer) and also its preferred terminal interface transport level (e.g. TCP or

UDP for GPRS). The definition of this terminal interface transport level which is used between the mobile and the server
is out scope for BIP and not described in TS 31.111.

BIP does not reflect reliability and security of the transferred data which must be handled by additional protocols (e.g.
CAT-TP).. Please refer to section § Reliability and Security using BIP for details.

Following graphic shows the BIP protocol stack (using the GPRS bearer):

Figure 17 –BIP Protocol stack

• SGSN: Serving GPRS Support Node
• GGSN: Gateway GPRS Support Node

Application (RFM/RAM/...)

BIP (for GPRS)

BIP (ME side)

TCP or UDP

IP

GPRS

TCP or UDP

IP

GPRS

Application

UICC

ME SGSN/GGSN/Server card

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 100

As defined in TS 102 223 (Annex A) the BIP commands and events are separated into different classes “e” and “f”. This
categorization is also reflected in the Terminal Profile sections, as seen in the following section.

• The following USAT table reflect the standard BIP command/event-set (class “e”):

Proactive command: OPEN CHANNEL
Proactive command: CLOSE CHANNEL
Proactive command: RECEIVE DATA
Proactive command: SEND DATA
Proactive command: GET CHANNEL STATUS
Event download: Data available
Event download: Channel status

• Some additional commands and events (class “f”) relevant to BIP are used for local bearers mainly (e.g.

Bluetooth, IrDA):

Proactive command: SERVICE SEARCH
Proactive command: GET SERVICE INFORMATION
Proactive command: DECLARE SERVICE
Event download: Local connection event

The BIP commands and events are available for 2G and 3G with following bearers:

Network Bearers:

• CSD and HSCSD bearer
Circuit Switched Data bearer, this is a „regular“ data call used in a 2G network
High Speed Circuit Switched Data bearer, this is an optional high speed data call used in a 2G network

• Packet Data Service

GPRS (General Packet Radio Service) for packet oriented connection used in 2G networks, or

UTRAN for packet oriented connection used in 3G networks

Local Bearers:
e.g. Bluetooth and IrDA links

14.2 BIP Commands description

14.2.1 OPEN CHANNEL

This command enables the SIM to open a data channel. The UICC has to provide all necessary information to the ME
related to the desired bearer (e.g. APN for GPRS, Address for CSD, etc.).
It is up to the ME to allocate send/receive buffers for the data transfer, allocate a channel Id for the UICC/ME data

exchange and open the data channel.
The ME informs the UICC about the connection status either via the TERMINAL RESPONSE (after execution of the OPEN

CHANNEL command) or via an Envelope Command (EVENT DOWNLOAD - Channel Status).
The following list summarizes the different modes of the OPEN CHANNEL command:

14.2.2 OPEN CHANNEL related to Circuit Switched bearer

The UICC indicates whether the terminal should establish the link immediately or upon receiving the first transmitted

data (on demand).

The UICC provides to the terminal a list of parameters necessary to establish a link.

The UICC may request the use of an automatic reconnection mechanism. The UICC may also request an optional
maximum duration for the reconnection mechanism. The terminal shall attempt at least one link establishment set-up.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 101

The UICC may also request an optional maximum duration for the terminal to automatically release the link if no data is
exchanged.

If the Fixed Dialing Number service is enabled, the address included in the OPEN CHANNEL proactive command will not

be checked against those of the FDN list.

If the terminal supports the Last Number Dialed service, the terminal does not store the channel set-up details (called
party number and associated parameters) sent by this UICC command in EFLND.

14.2.2.1 OPEN CHANNEL related to packet data service bearer

The UICC indicates whether the terminal should establish the link immediately, in background mode or upon receiving
the first transmitted data (on demand).

The UICC provides to the terminal a list of parameters necessary to activate a packet data service.

The terminal will attempt at least one packet data service activation.

Example of GPRS Open channel:

If “immediate packet data service activation” is requested, the ME allocates buffers, activates the PDP (Packet
data protocol) context, informs the SIM and reports the channel Id using TERMINAL RESPONSE (Command
performed successfully).

If “on demand“ PDP packet data service activation is requested, the ME allocates buffers, informs the SIM and
reports the channel identifier using TERMINAL RESPONSE (Command performed successfully).

If “background mode” packet data service activation is requested, the ME does the same steps as under “on
demand PDP“.
At the end of activation (which can take a longer time depending on the network) the terminal sends a channel
status event (Link Established) to the UICC.

Developer Tip:
In case of an error in opening a channel in background mode the ME sends a Channel Status Event „Link not
established - no further info“.

14.2.2.2 OPEN CHANNEL related to local bearer

This command is used to establish a connection using a local bearer (Bluetooth, IrDA, RS232, USB). The UICC can act as

a server or a client. In the server use case, the UICC performs an OPEN CHANNEL only after having received a Local
Connection event from the terminal.

Upon receiving this command, the ME decides if it is able to execute the command. The UICC indicates whether the ME
should establish the link immediately or upon receiving the first transmitted data (on demand).

The UICC provides to the terminal a list of parameters necessary to establish a link.

The UICC may request the use of an automatic reconnection mechanism. The UICC may also request an optional
maximum duration for the reconnection mechanism. The terminal attempts at least one link establishment set-up.

The UICC may also request an optional maximum duration for the terminal to automatically release the link if no data is

exchanged.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 102

14.2.2.3 OPEN CHANNEL related to Default (network) Bearer

The UICC indicates whether the terminal should establish the link immediately or upon receiving the first transmitted
data (on demand).

The terminal is responsible for providing the parameters necessary to establish the connection (e.g. APN for GPRS,
Address for CSD, etc.).

Upon receiving this command, the terminal decides if it is able to execute the command. Example behaviours are listed
in clauses for the selected bearer.

Developer Tip:
This functionality needs to be handled carefully, because the result is extremely linked to the terminal
configuration.

14.2.2.4 OPEN CHANNEL comparison of parameters
The following table shows all parameters of the different OPEN CHANNEL commands:

Description CS
bearer

packet
data

service
bearer

local
bearer

default
(network)
bearer

Proactive UICC command Tag M M M M

Length (over following parameters) M M M M

Command details M M M M

Device identities M M M M

Alpha identifier O O O O

Icon identifier O O O O

Address M - - -

Subaddress O - - -

Duration 1 (present if Duration 2 is present) C - C -

Duration 2 O - O -

Bearer description M M M M

Buffer size M M M M

Network Access Name - O - -

Other address (local address) O O - O

Text String (User login) O O - O

Text String (User password) O O O O

UICC/terminal interface transport level O O O O

Data destination address (requested when a
UICC/terminal interface transport is present)

C C C C

Remote Entity Address - - O -

Text Attribute (may be present only if the Alpha
Identifier is present)

C C C C

Frame Identifier O O O O

Legend:
M = Mandatory

C = Conditional (dependency described in brackets)
O = Optional

 - = not available

14.2.3 CLOSE CHANNEL

This command requests the ME to close the channel corresponding to the Channel identifier.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 103

The ME releases the data transfer, discards the remaining data in the buffer, and informs the UICC that the command
has been successfully executed, using TERMINAL RESPONSE;

14.2.4 SEND DATA

Once a channel has been successfully opened, this command requests the ME to send data through the previously set
up data channel corresponding to a dedicated Channel identifier. Upon receiving this command, the ME either
immediately sends data or stores provided data into the Tx buffer corresponding to the Channel identifier.

14.2.5 RECEIVE DATA

This command requests the ME to return data from a dedicated Channel identifier according to the number of bytes
specified by the UICC.
Then, upon receiving this command, if the requested number of bytes is available in the buffer, the ME informs the UICC
that the command has been successfully executed, using TERMINAL RESPONSE and returns the requested data and the
number of bytes remaining in the channel buffer (or FF if more than the maximum bytes remain).

14.2.6 GET CHANNEL STATUS

This command requests the ME to return a Channel status for each dedicated Channel identifier using TERMINAL
RESPONSE.
Channel Status information contains e.g. Channel Identifier, Link establishment status, Link dropping.

14.2.7 SERVICE SEARCH

This command is used to search for the availability of a local service in the environment of the terminal, such as

Bluetooth or IrDA.
The UICC may provide a Device Filter. The devices responding to the service search are then part of the set given by
Device Filter. If the Device Filter parameter is not present, no filter on the type of equipment is done by the terminal.

The UICC provides a Service Search parameter. The devices responding to the service search then support the
requested service.

14.2.8 GET SERVICE INFORMATION

This proactive command is used to look for the complete service record related to a service. By service record, it is
meant all information that allows the UICC to define precisely the service (e.g. protocol stacks).

The UICC provides the Attribute Information parameter which indicates which detailed information is required.

If the terminal is able to execute the command the terminal performs the search for the service details and informs the
UICC using TERMINAL RESPONSE (command performed successfully, Service Record). The Service Record is then used

as argument of an Open Channel proactive command.

If the CAT application already has all information concerning the service, it may directly try to connect the service
performing an OPEN CHANNEL, and bypass the GET SERVICE INFORMATION step.

14.2.9 DECLARE SERVICE

This command allows the UICC to download into the terminal service database the services that the card provides as a

server. The declaration is to be made on a service by service basis, at the set-up (e.g. after the profile download). The
UICC indicates whether the terminal is required to add a new service in the terminal service database or to remove a
service from the terminal service database.

When adding a new service, the UICC provides a Service Record that the terminal is required to register into its local
service database. When removing a service, the UICC provides the Service Identifier which uniquely identifies the service

to be deleted from the database.

If the terminal is able to execute the command the terminal informs the UICC that the command has been successfully
performed using TERMINAL RESPONSE.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 104

Note that a service can be coded using a coding type issued from a specific local bearer technology (e.g. Bluetooth or
IrDA); however this service is considered by the terminal as available for any bearer.

14.3 BIP Events description

14.3.1 EVENT DOWNLOAD (DATA AVAILABLE):

If the applet is registered to this event (through the ToolkitRegistry.setEvent method), and once the
targeted channel buffer is empty when new data arrives in it, the ME informs the UICC that this has occurred, by using

the ENVELOPE (EVENT DOWNLOAD – Data available).

14.3.2 EVENT DOWNLOAD (CHANNEL STATUS)

The Channel Status event is sent from the ME to the UICC if

• the link was established or establishing failed (after an OPEN CHANNEL in background mode); or
• a link enters an error condition; or
• any other error.

The event is only sent, if the error condition is not resulting from the execution of a proactive command and if the
Channel Status event is part of the current SET UP EVENT LIST.

From Rel. 6 on the structure of the Envelope (Event Download - Channel Status) contains a Bearer description data

object, which is only present after an OPEN CHANNEL in background mode.

See example in Annex I in TS 102 223

14.3.3 EVENT DOWNLOAD LOCAL CONNECTION

This event notifies the card that a local event has been set up, indicates the Remote Entity Address and Interface
Transport Level (UDP, TCP).

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 105

14.3.4 Terminal Profile indication for BIP

The ME indicates support of the BIP commands and events as well as the relevant network capabilities in its Terminal
Profile.

According to TS 102 223 the BIP commands are separated into 2 classes, class “e“ and “f“, which can be found in the
Terminal Profile Bytes of the ME:

Sixth byte: (According to TS 102 223: Event driven information extensions)

 b8 b7 b6 b5 b4 b3 b2 b1

 Event: Language selection

 Event: Browser Termination

 BIP Event: Data available

 BIP Event: Channel status

 Event: Access Technology Change

 Event: Display parameters changed

 BIP Event: Local Connection

 Event: Network Search Mode Change

Twelfth byte: (According to TS 102 223: Bearer Independent Protocol proactive commands, class “e” and “f”)

 b8 b7 b6 b5 b4 b3 b2 b1

 Proactive UICC: OPEN CHANNEL

 Proactive UICC: CLOSE CHANNEL

 Proactive UICC: RECEIVE DATA

 Proactive UICC: SEND DATA

 Proactive UICC: GET CHANNEL STATUS

 Proactive UICC: SERVICE SEARCH

 Proactive UICC: GET SERVICE INFORMATION

 Proactive UICC: DECLARE SERVICE

Thirteenth byte: (According to TS 102 223: Bearer Independent Protocol supported bearers, class “e”)

 b8 b7 b6 b5 b4 b3 b2 b1

 CSD supported by terminal

 GPRS supported by terminal

 Bluetooth supported by terminal

 IrDA supported by terminal

 RS232 supported by terminal

 Number of channels supported by terminal

Seventeenth byte: (According to TS 102 223: Bearer Independent Protocol supported transport interface, class “e”)

 b8 b7 b6 b5 b4 b3 b2 b1

 TCP

 UDP

 RFU, bit = 0

14.4 Java-API for BIP

The UICC specification defines a BIP Java-API supporting BIP tags, events and methods.

The following specifications contain the BIP Java-API for Release 5 and Release 6 of the UICC:

Rel. 5: 3GPP TS 43.019
Rel. 6: ETSI/SCP TS 102 241

According to some API-extensions from Rel. 5 to Rel. 6 the following tables show which API-items are only available
from Rel. 6 on (“x” = supported, “-“ = not supported):

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 106

Proactive BIP command Tags:

BIP command tags Rel. 5 Rel. 6

PRO_CMD_OPEN_CHANNEL x x

PRO_CMD_GET_CHANNEL_STATUS x x

PRO_CMD_SEND_DATA x x

PRO_CMD_RECEIVE_DATA x x

PRO_CMD_CLOSE_CHANNEL x x

PRO_CMD_DECLARE_SERVICE - x

PRO_CMD_GET_SERVICE_INFORMATION - x

PRO_CMD_SERVICE_SEARCH - x

BIP Envelope TAG to get field value:

BIP envelope tags Rel. 5 Rel. 6

TAG_CHANNEL_DATA_LENGTH x x

TAG_CHANNEL_DATA x x

TAG_REMOTE_ENTITY_ADRESS - x

TAG_SERVICE_RECORD - x

TAG_SERVICE_SEARCH - x

TAG_SERVICE_AVAILABILITY - x

TAG_CHANNEL_STATUS x x

On reception of BIP envelope, trigger applet registered to the event:

BIP events Rel. 5 Rel. 6

EVENT_EVENT_DOWNLOAD_DATA_AVAILABLE x x

EVENT_EVENT_DOWNLOAD_CHANNEL_STATUS x x

EVENT_EVENT_DOWNLOAD_LOCAL_CONNECTION - x

Methods:

BIP methods Rel. 5 Rel. 6

initClosechannel x x

copyChannelData x x

getChannelIdentifier x x

allocateServiceIdentifier - x

releaseServiceIdentifier - x

getChannelStatus - x

General Result Constant:

BIP result code Rel. 5 Rel. 6

RES_ERROR_BEARER_INDEPENDENT_PROTOCOL_ERROR - x

Moreover as specified in TS 102 241 the Toolkit Framework assures a minimum behavior for managing BIP events and
dedicated channels:

In order to allow the toolkit applet to be triggered by the BIP related events, the Toolkit Framework must have

previously issued a SET UP EVENT LIST proactive command.

When a toolkit applet changes one or more of these requested events of its registry object, the Toolkit Framework
dynamically updates the event list stored in the ME during the current card session.

For the events DOWNLOAD DATA AVAILABLE, DOWNLOAD CHANNEL STATUS and DOWNLOAD LOCAL CONNECTION
(new in Release 6) the framework only triggers the applet registered to these events with the appropriate channel or
service identifier.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 107

When a Toolkit Applet has sent an OPEN CHANNEL proactive command and received a successful TERMINAL RESPONSE,
the framework registers the received channel identifier for the calling Toolkit Applet.

When a Toolkit Applet has sent a CLOSE CHANNEL proactive command and received a successful TERMINAL RESPONSE
or at card reset, the framework releases the channel identifier contained in the command.

The Toolkit Framework prevents a toolkit applet to issue a SEND DATA, RECEIVE DATA and CLOSE CHANNEL proactive

commands using a channel identifier, which is not allocated to it. If an applet attempts to issue such a command the
Toolkit Framework throws an exception (command not allowed).

The Toolkit Framework prevents a toolkit applet to issue a DECLARE SERVICE (add, delete) proactive commands using a
service identifier, which is not allocated to it. If an applet attempts to issue such a command the Toolkit Framework
throws an exception (command not allowed).

In case of the maximum number of allocated Services is exceeded the Toolkit Framework throws a Toolkit Exception (no
service id available).

The Toolkit Framework prevents a toolkit applet to issue an OPEN CHANNEL proactive command if it exceeds the
maximum number of channel allocated to this applet during the INSTALL [install]. If an applet attempts to issue such a
command the Toolkit Framework throws an exception (command not allowed).

14.5 Reliability and Security using BIP

As BIP is just a set of USAT commands to establish a channel from the ME to a remote server, there is no guarantee of

reliable data exchange or end-to-end security, especially if a packet oriented bearer like GPRS is used together with UDP
as transport interface where UDP-packets may get lost without notice. Reliability and security have to be achieved by

additional protocols which are referenced here:

Protocols to ensure reliability:

TCP: If this protocol is supported by the ME, it ensures that the data packages are fully transmitted and have the correct
order.

CAT_TP: This protocol is defined in TS102 127. It must be implemented on the UICC and is based on the UDP-support of

mobiles. If the server also supports CAT_TP it ensures full packet delivery and correct packet order. CAT_TP also
provides an identification of the UICC to the server.

Protocol to ensure security:
UICC secure packages: this protocol is defined in TS 102 225 and describes the use of secure protocol on a UICC
(originally derived from the GSM 03.48 standard). It also includes the use of CAT_TP for secure packet exchange.

14.6 Applet Developer tips

• The registration to the event DOWNLOAD DATA AVAILABLE and event DOWNLOAD CHANNEL STATUS is

effective once the toolkit applet has issued a successful OPEN CHANNEL proactive command, and valid till the

first successful CLOSE CHANNEL or the end of the card session.

• The registration to the event DOWNLOAD LOCAL CONNECTION is effective once the toolkit applet has issued a
successful DECLARE SERVICE (add) proactive command, and valid till the first successful DECLARE SERVICE
(delete) or the end of the card session.

• A successful TERMINAL RESPONSE means that the result of the proactive command execution belongs to

command performed category (i.e. General Result ='0x').

• Without using an additional transport layer or security mechanism on top of BIP (e.g. CAT_TP), each applet

developer has to make sure that these issues are addressed by the applet. The ME will manage the data from

or to the UICC via TCP protocol, in order to ensure the data transmission to the remote entity.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 108

• BIP is fully integrated in the USAT specification TS 31.111 and therefore has no influence on the existing USIM /
USAT communication between UICC and Handset.

• A BIP connection is always started by the UICC and it can not be started by the server. However the server can

request a BIP application for opening a channel using a remote command like PUSH as described in TS 102226.

An example of a BIP APDU exchanges is available in the Annex I of the TS 102 223.

An example of an Applet using BIP API and BIP functionalities is available in Annex D of the 43.019 (Rel. 5)

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 109

15 Card Remote Management

The TS 102 226 specification defines the Card Remote Management by OTA including the Remote File Management and
the Remote Applet Management. This specification first defines the data formats used to send a remote management
request in a Command Packet and to retrieve the result of this request or card data in the Additional Response data of a
Response Packet. This specification then defines the commands available for the Remote File Management and for the

Remote Applet Management.

15.1 Remote Management Application data formats

Two different data formats are supported by Remote Management Applications.
The Compact Data Format allows the Remote Management Application to execute several commands but can send back

to the server only one response to an APDU command, i.e. only one outgoing command can be included in the script.
While the Expanded allows the card to send back to the server several responses to the APDU commands, i.e several

outgoing commands can be included in the script.
The Compact and Expanded data formats are distinguished by different TAR.

15.1.1 Compact Remote Management Application data format

In the Compact Data format, each command packet contains a sequence of commands.

Commands are concatenated in the command packet according to the following format:
Class byte

(CLA)
Instruction
code (INS)

P1 P2 P3 Data (optional)

To retrieve the Response parameters/data of a case 4 command the GET RESPONSE command has to be issued.
The GET RESPONSE and any case 2 command (e.g. READ BINARY, READ RECORD) shall only occur once in a command
string and, if present, must be the last command in the string.

For all case 2 commands and for the GET RESPONSE command, if P3='00', then the card sends back all available
response parameters/data e.g. if a READ RECORD command has P3='00' the whole record shall be returned. The

limitation of 256 bytes does not apply for the length of the response data. In case the data is truncated in the response,
the status words shall be set to '62 F1'.

15.1.2 Compact Remote response structure

If a proof of Receipt is required by the sending entity, the Additional Response Data sent by the Remote Management

Application shall be formatted as follows:
Length Name

1 Number of commands executed within the command
script (see note)

2 Last executed command status word

X Last executed command response data if available
(i.e. if the last command was an outgoing command)

NOTE: This field shall be set to '01' if one command was
executed within the command script, '02' if two
commands were executed, etc.

15.1.3 Expanded Remote Management Application data format

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 110

The Expanded Remote Application data format is a more flexible protocol capable of containing several outgoing
commands in the same Command Packet.

15.1.4 Expanded Remote Commands

Each Command Session is included in a BER-TLV (Command Scripting template); one Command Script can be present in
one single Command Packet as follows:

Figure 18 – Expanded Remote Format

A command session (or command script) is made of a sequence of C-APDU commands, each of them coded as a C-APDU
TLV as follows:

Figure 19 – Format of a Command Session TLV

Note: the presence of the Comprehension Requirement bit is irrelevant for the card.

The LC parameter represents the APDU input data and it is present only for Case 3 / Case 4 commands; in these cases,
also the Data field is present; a LC value of ‘00’ means 256 bytes.

The LE parameter represents the APDU output data and it is present only for Case 2 / Case 4 commands. A LE value of
‘00’ means “all data available”, that is the whole amount of data to be returned without the constraint of 256 bytes.

The total size of a single C-APDU TLV can be up to 262 bytes.

Command sessions are independent of each other, e.g. in case of Remote File Management, at the beginning of each
command session the root directory is selected (the root is the MF in case of a UICC RFM, or is the ADF in case of a

USIM RFM).

When the first command results in an error, command packet execution is aborted and this C-APDU becomes the last
executed command and the R-APDU is part of the Response Scripting Template.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 111

15.1.5 Expanded Remote Responses

The Response Session is included in a BER TLV (Response Scripting Template). Only for Case 2 / Case 4 C-APDU TLV the
relevant R-APDU TLV is present, with the exception of the last C-APDU TLV as the corresponding R-APDU is always
present.

The format of the Response Scripting Template is as follows:

Figure 20 – Response Scripting Template structure

For each R-APDU, returned data size is only limited by the maximum data length returnable by a single Response Packet

that may vary with the transport layer (e.g., SMS, BIP…).

Figure 21 – R-APDU TLV structure

If the returned data is larger than the transport layer capacity, a warning Status Word is returned (’62 F1’) with all the

fitting data and no other command is executed.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 112

16 Remote File Management Architecture

Remote file management applications on the UICC/USIM provide Remote file access in accordance to the new
UICC/USIM architecture.

16.1 Remote File Access for UICC
If an application provides access to the shared file system structure over the air, it is called “UICC Shared File System
Remote File Management” (UICC RFM). It allows file management of the EFs and the DFs stored under the MF, but it

can not access any ADF so the execution of Select by path or Select by FID with File IDentifier 0x7FFF contained in
the Command Data fails. Select by name is also not supported.

16.2 Remote File Access for ADF
As on the card several applications can be present, each of them is the owner and the manager of a different ADF.
There can be also several RFM applications to manage ADF via OTA. Each RFM application is also able to manage the

EFs and DFs under the MF.
The implicitly selected ADF is the current directory at the beginning of a Command "session". It is possible to reselect

the ADF root from another DF by using the FID 0x7FFF.
With an USIM RFM it is not possible to access files stored under other ADFs (e.g. another USIM).

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 113

Figure 22 – The ways of accessing an ADF

16.3 Remote File Application Parameters

Even though each RFM application can manage just one ADF, several RFM applications managing the same ADF can be
present. As different Remote Files Management applications are independent from each other, they can be installed with
different parameters, such as:

• Access Domain, coded according to ‘Remote Applet Management’ Chapter.

• Minimum Security Level, coded according to ‘Remote Applet Management’ Chapter.
• Related ADF

• TAR value(s)

By changing these parameters different access rights and different security levels can be defined for the different
applications.

Interoperability Issue:
The way Remote File Application parameters are configured is not specified in 102 226 standards. SIM Alliance
members provide proprietary mechanisms to configure those parameters.

16.4 Remote File Management AID and TAR

The following TARs must be used to address the RFM applications, as specified in TS 101.220:

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 114

Remote File Management Applications

UICC Shared File System 'B0 00 00' and
'B0 00 02' to 'B0 00 0F'

USIM File Systems 'B0 00 01' and
'B0 00 20 to 'B0 01 1F'

It is worth to note that these bytes are independent from the USIM AID. The Compact and Expanded Remote
Application data formats are distinguished by different TAR values.

16.4.1 RFM Commands

RFM available commands

SELECT
UPDATE BINARY

UPDATE RECORD
SEARCH RECORD

INCREASE
VERIFY PIN

CHANGE PIN
DISABLE PIN
ENABLE PIN

UNBLOCK PIN
DEACTIVATE FILE

ACTIVATE FILE
READ BINARY

READ RECORD
CREATE FILE
DELETE FILE
RESIZE FILE

SELECT

The SELECT command supports all the selection modes when selecting a DF or an EF by FID or by path; the FID
0x7FFF, dedicated to select the current ADF, cannot be used in cases of UICC RFM.

The SELECT by DF Name can not be used in the RFMs because it is used to select a different ADF and each USIM RFM
manages just one ADF.

Warning: If a file is declared as not shareable, the file selection status can prevent the file from being selected in other

contexts (I/O, toolkit applets). In this case, if the file is currently selected by User Equipment or by a Toolkit Applet, it
can not be selected by RFM and vice versa.

READ BINARY, UPDATE BINARY,
READ RECORD, UPDATE RECORD,
SEARCH RECORD, INCREASE,
ACTIVATE FILE, DEACTIVATE FILE,
CREATE FILE, DELETE FILE, RESIZE FILE

The operations are allowed only if a Security Condition (SC) related to the relevant Access Mode (AM) is granted by the
RFM application Access Domain.

The access rights granted to an application by its Access Domain is independent from the access rights granted at the
UICC/Terminal interface. This implies in particular that the status of a secret code (e.g. disabled PIN1, blocked PIN2,
etc.) at the UICC/Terminal interface does not affect the access rights granted to an application.

Security Condition and Access Mode are indicated in EFARR (see [102 221]).

VERIFY PIN, CHANGE PIN,

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 115

ENABLE PIN, DISABLE PIN,
UNBLOCK PIN

The PIN related commands affect the PIN value or the PIN blocking status both in RFM sessions and in I/O sessions:
presenting a wrong PIN value for three times, the PIN is blocked also for the I/O session; changing PIN value via OTA

affects PIN value also for the I/O session, and so on.

Interoperability Issue:
SIM Alliance members are not interoperable about the PIN verification during an OTA sessions: it may or may not

change the set of operations granted to the RFM application in the current session.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 116

17 Remote Application Management

Figure 23 – Remote Application Management Architecture

Remote Application Management on a card includes the ability to load, install and remove applications. It is performed
using commands defined in the GlobalPlatform Specification (see GP 2.1.1).

17.1 Remote Application Management Architecture
The Issuer Security Domain is the representative entity of the card issuer. It provides support for control, security and
communication requirements of the card issuer. It has the capability of loading, installing, and deleting applications that
belong either to the Card Issuer or to other Application Providers.

Security Domains support security services such as key handling, encryption, decryption, digital signature generation and
verification for their owners (Card Issuer, Application Provider or Controlling Authority) applications.

Remote Application Management applications are OTA interfaces to the Issuer Security Domain and other Security

Domains.

The GlobalPlatform API provides services to Applications (e.g. cardholder verification, personalization, or security
services). It also provides Card Content management services (e.g. card locking or application Life Cycle State update)
to Applications.

Interoperability Issue:

SIM Alliance members don’t guarantee that the GlobalPlatform API is available on any smartcard product.

The main responsibilities of the GlobalPlatform Environment (OPEN) are to provide an API to Applications, command
dispatch, Application selection, and Card Content management.

17.1.1 Application Loading and Installation Process

The loading and installation process enables an applet to be downloaded on to a card and made available for use.
The first step is to load a package containing an applet byte code onto the card. Then the applet must be installed from

the package before it can be used. Applet installation involves creating an applet instance (object) in the card memory.
Two commands are used to perform the process: INSTALL and LOAD.

A loading session consists of the sequence of commands as described in the following diagram:

Runtime Environment

Issuer Security
Domain

RAM

OPEN

OP API

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 117

.

Figure 24 – Loading and installing an application

The INSTALL command must be sent first with the Load option. Several LOAD commands are then sent to the card; they
include the package byte code, which is sent to the card, block by block. Each block is numbered and the last block is
clearly identified. Depending on the applet size, several bearer message entities might be used for loading the package.

An applet is installed via the INSTALL command sent with the Install option. Installation does not necessarily occur
during the same session as the package loading phase.

17.1.2 Application Life Cycle States

The life cycle states of an application comply with the GlobalPlatform 2.1.1 specification (see GP 2.1.1):
• INSTALLED

• SELECTABLE
• LOCKED

The commands to manage the different life cycle states of an application are INSTALL, GET STATUS and SET STATUS.

When an applet is locked, it cannot be triggered or selected and all its menu entries are disabled (in other words:
removed from the SET UP MENU proactive command).

When an applet is in the state SELECTABLE, it can be triggered by the Toolkit Framework. Moreover it is able to

maintain its own application specific states, but these are out of scope for the Remote Application Management.

The applet’s life cycle state starts with the successful execution of the INSTALL(install) command.

17.2 Description of the IN/OUT Commands
The list of commands supported for Remote Application Management is specified in the table below.

Operational Command Additional Features in ETSI TS 102 226 and
3GPP TS 31.116 Compared to GP 2.1.1

DELETE Load File No additional features

DELETE Application No additional features

SET STATUS No additional features

INSTALL [for load] No additional features

INSTALL [for install] Specifies the Install Parameter field including the
System Parameters field. This enables you to specify:
the memory space required for installation
the toolkit application specific parameters (including
access domain and information to manage the toolkit

Load

Request

Load 1

Load n

Install

Application

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 118

card resources as menus)

INSTALL [for make selectable] No additional features

LOAD Defines an additional requirement concerning the used
algorithm for cards supporting DAP verification

PUT KEY Only Key Version Numbers from ’01’ to ‘0F’ and Key
Identifiers from ‘01’ to ‘03’ are used for the secured
packet structure according to ETSI TS 102 225.
Key Version Number ‘11’ is used for the calculation of
the UICC Toolkit Parameters DAP and Access Domain
DAP.

Definition of the key identifier which has to be used for
the ciphering of the key values which are provided in

the PUT KEY command.
Clarification of the version of the transport key DEK

used when replacing or creating a key set.

GET STATUS Extended to retrieve the SCP Registry Data (if bit2 of P2
is set)

GET DATA Extended to retrieve:
‘FF 1F’ – menu parameters (see 3GPP TS 23 048)
‘FF 20’ – card resources (see 3GPP TS 23 048)

‘FF 21’ – information on the card resources used and
available

‘FF 22’ to ‘FF 3F’ – reserved for allocation in
ETSI TS 102 226

Interoperability Issues
The SIM Alliance members do not guarantee that the SELECT, STORE DATA, DELETE Key, INSTALL [for

personalization] and INSTALL [for extradition] commands as defined in GP 2.1.1 are supported by the Remote
Application Management on each card.

Concerning the GlobalPlatform commands used via OTA the SIM Alliance members do not guaranty the
interoperability concerning the status word sent in the additional data of the response packet.

The SIM Alliance members recommend using the GET DATA with ‘FF 21’ to retrieve the card resources instead of

using ‘FF 20’. Furthermore they recommend to use the GET STATUS to retrieve the menu parameters instead of
using GET DATA with ‘FF 1F’.

17.2.1 LOAD Command

The SIM Alliance members state that a card supporting DAP verification supports at least DES scheme for Load File Data
Block Signature computation according to GlobalPlatform Card Specification GP 2.1.1.

17.2.2 INSTALL (load) Command

A card supporting DAP verification supports the Load File Data Block Hash according to GlobalPlatform Card Specification
GP 2.1.1.

Interoperability Issue

If present, the Load Parameter Field of the INSTALL [for load] command shall be coded according to
GlobalPlatform Card Specification GP 2.1.1.

If the System Specific parameters "Non volatile code space limit" (Tag 'C6'), "Volatile data space limit" (Tag 'C7')
and "Non volatile data space limit" (Tag 'C8') are available, the SIM Alliance members state that the UICC is able

to handle them.

When these parameters are available, they are used to determine whether it is possible to load the application on
the card or not by checking the available memory versus the specified one.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 119

17.2.3 INSTALL(Install) Command

The SIM Alliance members state that they all support the combined [for install and make selectable] within the same
INSTALL command.

SIM and UICC file access and toolkit parameters are not allowed to be contained simultaneously in the INSTALL
command.

SIM file access and toolkit parameters shall be used for sim.toolkit.ToolkitInterface and UICC file access

and toolkit parameters apply to the uicc.toolkit.ToolkitInterface and the according FileView.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 120

Figure 25 – SAT and USAT toolkit install parameters

The INSTALL command for install mode is formatted as follows when installing an applet with SIM file access and toolkit
specific parameters:

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 121

Presence Length Description

M 1 Length of the load file AID
M 5-16 Load file AID
M 1 Length of the class file AID
M 5-16 Class file AID
M 1 Length of the application instance AID
M 5-16 Application instance AID
M 1 Length of the application privilege

C 0 or 1 Application privilege
M 1 Install parameter length

M ≥14 Install parameter field (TLV formatted)

 Presence Length Description

 M 1 Tag of the System Parameters field: EFh
 M 1 Length of the System Parameters field
 M ≥10 System Parameters field (TLV formatted)

 Presence Length Description

 M 1 Tag of the non-volatile memory required:
C8h

 M 1 Length of the non-volatile memory required
for the installation field

 M 2 Non-volatile memory required for the
installation field (in bytes)

 M 1 Tag of the volatile memory required: C7h
 M 1 Length of the volatile memory required for

the installation field

 M 2 Volatile memory required for the
installation field (in bytes)

 O 1 Tag of the SIM file access and toolkit
applications specific parameter field: CAh

 C 1 Length of the SIM file access and toolkit
applications specific parameter field

 C 6-n SIM file access and toolkit applications
specific parameter field

 M 1 Tag of the Applet-Specific Parameters field: C9h
 M 1 Length of the Applet-Specific Parameters field
 C 0-o Applet-Specific Parameters

M 1 Length of the install token
C 0-n The Install Token is mandatory for Delegated Management. The install token shall not be

present if Delegated Management is not used.

M – Mandatory; C – conditional; O – optional

Note

The memory space required indicates the minimum size to be available on the card when downloading the
application. The USIM must prevent the applet from being installed if the required size is not available on the
card.

The INSTALL command for install mode is formatted as follows when installing an applet with UICC System specific

parameters:

Presence Length Description

M 1 Length of the load file AID
M 5-16 Load file AID
M 1 Length of the class file AID

M 5-16 Class file AID
M 1 Length of the application instance AID

M 5-16 Application instance AID

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 122

M 1 Length of the application privilege
C 0 or 1 Application privilege
M 1 Install parameter length

M ≥14 Install parameter field (TLV formatted)

 Presence Length Description

 M 1 Tag of the System Parameters field: EFh
 M 1 Length of the System Parameters field
 M ≥10 System Parameters field (TLV formatted)

 Presence Length Description

 M 1 Tag of the non-volatile memory required:
C8h

 M 1 Length of the non-volatile memory required
for the installation field

 M 2 Non-volatile memory required for the
installation field (in bytes)

 M 1 Tag of the volatile memory required: C7h
 M 1 Length of the volatile memory required for

the installation field
 M 2 Volatile memory required for the

installation field (in bytes)

 O 1 Tag of the UICC System specific parameters field: EAh
 C 1 Length of the UICC System specific parameters constructed field

 C 0-m UICC System specific parameters constructed value field
 M 1 Tag of the Applet-Specific Parameters field: C9h
 M 1 Length of the Applet-Specific Parameters field
 C 0-o Applet-Specific Parameters

M 1 Length of the install token
C 0-n The Install Token is mandatory for Delegated Management. The install token shall not be

present if Delegated Management is not used.

Interoperability Issue

• The memory space required on the card is not a physical memory reservation. The physical memory size
actually used on the card depends on the card manufacturer. There is currently no interoperability in this

respect and you are advised to use the value ranges provided by the card manufacturers.
• If the installation of an application fails all allocated resources are freed but the claiming of the resources might
differ depending on the card manufacturer.

17.2.3.1 SIM File Access And Toolkit Application Specific Parameters

The SIM File Access and Toolkit Application Specific Parameters are mandatory for applications using the

sim.toolkit.ToolkitInterface or sim.access.SIMView interface specified as defined in

3GPP TS 43 019.

The SIM File Access and Toolkit Application Specific Parameters are used to specify the resources that the application

instance can use. These resources include the timers and menu items for the SET UP MENU proactive command. The
network operator or service provider can also define the menu position and the menu identifier of the menus activating
the application. The following format is used to code the application parameters:

Presence Length Name

M 1 Length of the Access Domain field
M 1-q Access Domain
M 1 Priority level for the Toolkit application instance
M 1 Maximum number of timers allowed for the application instance

M 1 Maximum text length for a menu entry
M 1 Maximum number of menu entries allowed for this application instance

C 1 Position of the first menu entry (‘00’ means last position)
C 1 Identifier of the first menu entry (‘00’ means that the identifier is not

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 123

significant)
...
C 1 Position of the last menu entry (‘00’ means last position)

C 1 Identifier of the last menu entry (‘00’ means that the identifier is not
significant)

O 0 or 1 Maximum number of BIP channels for this application instance
O 0 or 1 Length of the Minimum Security Level field

C 0-r Minimum Security Level (MSL)
O 0 or 1 Length of the TAR Value(s) field (= 3*t)

C 3*t TAR Value(s) of the Toolkit application instance

M – Mandatory; C – conditional; O – optional

Refer to ETSI TS 102 226 for further details on these parameters (including default values for optional parameters).

Access Domain field: Some values are mandatory whereas others are optional.

SIM Alliance members support the following values:
• 00h – full access

• 01h – APDU access (reserved for 2G; see 3GPP TS 31 116)
• 02h – UICC access (reserved for 3G; see description below)

• FFh – no access

If an optional parameter is included, then all the previous parameters in the table above shall be included also.

If no parameter is set in the “Maximum number of channels” field, a default value is allocated for the application
instance by the card.

Interoperability Issue

The default parameter for the “Maximum number of channels” is card manufacturer dependent.

17.2.3.2 UICC System Specific Parameters

The UICC System Specific Parameters value field of the INSTALL [for install] command shall be coded as follows:

Presence Length Name

O 1 Tag of UICC Toolkit Application specific parameters field: 80h
C 1 Length of the UICC Toolkit Application specific parameters field

C n UICC Toolkit Application specific parameters

 Length Name

 1 Priority Level of the Toolkit Application instance
 1 Maximum number of timers allowed for this application instance

 1 Maximum text length for a menu entry
 1 Maximum number of menu entries allowed for this application

instance
 1 Position of the first menu entry
 1 Identifier of the first menu entry (‘00’ means do not care)

 1 Position of the last menu entry
 1 Identifier of the last menu entry (‘00’ means do not care)
 1 Maximum number of BIP channels for this application instance

 1 Length of the Minimum Security Level field
 0-r Minimum Security Level (MSL)

 1 Length of the TAR Value(s) field (= t)
 t TAR Value(s) of the Toolkit application instance
 1 Maximum number of services for this application instance

O 1 Tag of UICC Toolkit parameters DAP: C3h
C 1 Length of UICC Toolkit parameters DAP
C o UICC Toolkit parameters DAP
O 1 Tag of UICC Access Application specific parameters field: 81h

(see Note 1)
C 1 Length of UICC Access Application specific parameters field

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 124

C p UICC Access Application specific parameters

 Presence Length Name

 O 1 Length of UICC file system AID (= ‘0x00’)
 O 0 Empty UICC file system AID
 O 1 Length of Access Domain for UICC file system
 O m Access Domain for UICC file system
 O 1 Length of Access Domain DAP
 O 0 or n Access Domain DAP
 O 1 Length of ADF #1 AID

 O 5-16 ADF #1 AID
 O 1 Length of Access Domain for ADF #1

 O o Access Domain for ADF #1
 O 1 Length of Access Domain DAP #1

 O 0 or p Access Domain DAP # 1

 O 1 Length of ADF #q AID
 O 5-16 ADF #q AID
 O 1 Length of Access Domain for ADF #q

 O o Access Domain for ADF #q
 O 1 Length of Access Domain DAP #q

 O 0 or p Access Domain DAP #q

O 1 Tag of UICC Administrative Access Application specific parameters field: 82h
(see Note 1)

C 1 Length of UICC Administrative Access Application specific parameters field
C p UICC Administrative Access Application specific parameters

 Presence Length Name

 O 1 Length of UICC file system AID (= ‘0x00’)
 O 0 Empty UICC file system AID
 O 1 Length of Administrative Access Domain for UICC file system

 O m Administrative Access Domain for UICC file system
 O 1 Length of Administrative Access Domain DAP

 O 0 or n Administrative Access Domain DAP
 O 1 Length of ADF #1 AID

 O 5-16 ADF #1 AID
 O 1 Length of Administrative Access Domain for ADF #1
 O o Administrative Access Domain for ADF #1

 O 1 Length of Administrative Access Domain DAP #1
 O 0 or p Administrative Access Domain DAP # 1

 O 1 Length of ADF #q AID

 O 5-16 ADF #q AID
 O 1 Length of Administrative Access Domain for ADF #q

 O o Administrative Access Domain for ADF #q
 O 1 Length of Administrative Access Domain DAP #q
 O 0 or p Administrative Access Domain DAP #q

Note
The UICC access application specific parameters and UICC administrative access application specific parameters
are also applicable for non-Toolkit applets which want to access the file system.

Coding of the Access Domain Data for UICC access mechanism
The UICC access mechanism is coded as follows:

Byte 1: ‘02’ for UICC access

Byte 2: ‘03’ the length of the following data

Byte 3:

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 125

 b8 b7 b6 b5 b4 b3 b2 b1

 Application PIN 1

 Application PIN 2

 Application PIN 3

 Application PIN 4

 Application PIN 5

 Application PIN 6

 Application PIN 7

 Application PIN 8

Byte 4:

 b8 b7 b6 b5 b4 b3 b2 b1

 ADM1

 ADM2

 ADM3

 ADM4

 ADM5

 ADM6

 ADM7

 ADM8

Byte 5:

 b8 b7 b6 b5 b4 b3 b2 b1

 ADM9

 ADM10

 ALWAYS

 Local PIN (only applicable for ADF)

 RFU

 RFU

 RFU

 RFU

These access rights are checked against SE ID 01 access rules as defined in ETSI TS 102 221 (see § 6.4.1 of the present
document).

Note
The Administrative Access Domains are coded the same way as the Access Domains.

The UICC access parameters are applicable to applications using the uicc.access.FileView defined in
ETSI TS 102 241.

The UICC Administrative access application specific parameters field is used to specify the access rights for the
application instance to administrate the file system.
The UICC Administrative access parameters are applicable to applications using the

uicc.access.fileadministration.AdminFileView defined in ETSI TS 102 241, also for operations

inherited from uicc.access.FileView (e.g. readBinary(..)).

17.2.4 DELETE Command

The following description is taken from the ETSI TS 102 226:

The removal of Applications, Executable Load Files and of Executable Load Files and its related Applications shall be
supported.

SIM Alliance members agree that they all provide mechanisms to recover memory space after deleting an application.

Note that these mechanisms can be different for the SIM Alliance members.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 126

Interoperability Issue
The SIM Alliance members do not guaranty that the warning status word ’62 00’ (Application has been logically
deleted) is supported.

Applet Developer Tip

As it is not possible in Javacard 2.2.1 to delete an applet owning an object stored in a static field, use the

AppletEvent.uninstall method to release such references.

17.2.5 GET DATA command

The SIM Alliance members agree that they all support the class byte value ‘80’ for the GET DATA command.

17.2.5.1 Extended Card Resources Tag

Extended Card Resources
Length Description Value

1 Number of installed applications tag ‘81’
1 Number of installed applications length X
X Number of installed applications

1 Free non volatile memory tag ‘82’
1 Free non volatile memory length Y

Y Free non volatile memory
1 Free volatile memory tag ‘83’

1 Free volatile memory length Z
Z Free volatile memory

Note
SIM Alliance members recommend using the GET DATA for the Extended Card Resources instead of the GET

DATA for the Card Resources as it is limited to 64kb regarding the free memory size returned.

17.2.6 GET STATUS command

If bit 2 of the P2 parameter is set, the returned GlobalPlatform Registry Data TLV includes a SCP Registry data TLV

which includes a Menu Parameters TLV for Issuer Security Domain, Security Domains and Applications.

SCP Registry Data
Tag Length Value

‘EA’ Length of following data SCP Registry Data
‘80’ Length of Menu parameters Menu parameters

 Length Value

 1 First menu entry position
 1 First menu entry identifier
 1 First menu entry state

 1 Last menu entry position

 1 Last menu entry identifier
 1 Last menu entry state

The menu entry identifiers and positions are the ones provided in the Menu Entries list defined in ETSI TS 102 241 and
are returned regardless of the menu entry state as well as regardless of the Application life cycle state (e.g.

Selectable/Locked, etc.).
The menu entry state is defined as follows:

'00': menu entry is disabled
'01': menu entry is enabled

other values RFU

Interoperability Issue

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 127

The LOGICALLY DELETED life cycle state as known from the OP 2.0.1 is not supported by all card manufacturers
as this life cycle state is not defined in the GP 2.1.1.

The SIM Alliance members advise to use only combinations of P1 as defined in the GP 2.1.1 as other
combinations defined in previous versions of the GlobalPlatform might not be supported by all card

manufacturers.

17.2.7 PUT KEY command

For a detailed explanation see § 18.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 128

18 Security domain and Key Management

18.1 Security Domains on UICC Java Cards

18.1.1 Introduction

The GP security architecture introduces the role of the card issuer and the application provider. It further defines four
specific on-card entities: the Card Manager, the Card Runtime Environment, Applications, and Security Domains.

The Issuer Security Domain and the Global Platform Environment (OPEN) are always created by the Card Issuer, but

applications may also be created by application providers. To ensure a secure way of communication between on-card
applications and off-card entities, keys are needed to encrypt / decrypt messages and calculate checksums.

Physically, a SD is a special application that supports a secure communication between an Application Provider’s

application and off-card entities during its personalization phase and runtime. For this purpose, a SD manages its own
keys.

It is desirable to limit the access to such keys, so that not every application provider knows the Card Issuer’s keys, and a
Card Issuer knows not the keys of any application provider. To grant such an access control, GP introduces the concept
of Security Domains (SD): every application is associated with a SD, there is a default SD on each card, the Issuer
Security Domain.
All applications of provider A can be associated with A’s SD, all applications of provider B with B’s SD etc.

GP defines additional privileges for Security Domains such as DAP verification, Delegated Management, the mutual

authentication process, the secure channel management and an API to manage the access of applications to a SD.
Parts of this functionality may be covered in future ETSI specifications and will then be introduced in this document.

18.1.2 Security Domains in non-OTA communication

In non-OTA communication, a security domain may provide means of establishing a secure channel between the
application and the outside world, as shown in the picture below. At minimum, the security domain has to provide access

to keys that can be utilized by applications for cryptographic purposes. Access to keys and secure channels is granted via
methods in the GP API.

Refer to GP card implementation specification for more details on security in non-OTA communication. This topic is only
covered here for reasons of understandability. It depends on the card manufacturer to which extend the non-OTA part
of GP is implemented.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 129

sd Security Domains in non-OTA communication

Host Application Security Domain

APDU Interface GP API

SELECT application

SELECT response

Application specific APDU

Message to unwrap

Unwrapped message

Application specific APDU response

Application specific APDU

Message to unwrap

Unwrapped message

Crypted message

Decrypted message

Application specific APDU response

Figure 26 – Security Domains in non-OTA communications

18.2 Security Domains in OTA-communication
It is specified in ETSI TS 102 225 that on every card that implements the GP security architecture, a SD must perform
the OTA security actions (i.e. RC/CC/DS, ciphering/deciphering, counter management). So in the case that there is an

application on a card that is associated with a SD and a secured OTA-message arrives for it, the message is unwrapped
and decrypted by the SD and not by the Toolkit Framework. In any case, applications get message data in plain format

as specified for the corresponding events (like the event EVENT_FORMATTED_SMS_PP_ENV).

18.2.1 Key Management

A SD manages its own keys. Like any other application, a SD is identified by a TAR.
PUT KEY command by OTA is allowed to change and create keys.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 130

Developer Tip
The usage of the PUT KEY command to create key sets over-the-air is not recommended as the PoR handling in

the existing networks is not reliable enough.

The PUT KEY is either issued via a secure channel or via OTA, in the latter case the TAR is evaluated by the Toolkit

Framework to channel the command to the right Security Domain.
According to the GP specification, keys have to be associated with a certain algorithm and length. In the PUT KEY

command, an algorithm identifier together with length information is sent to the card together with the key data.
Keys can be updated by using the PUT KEY command, but the key deletion command may not be supported by each
card.
Keys are always organized in Key Sets. According to GP, a Key Set may contain one to many keys. The

ETSI TS 102 225 precises the definition to three keys per key sets (KID, KIc and DEK see also § 12.2.2) and an
additional counter.
A maximum of 15 key sets for OTA transportation is allowed for the ISD. SIM Alliance members support up to 15 key

sets for OTA transportation for each security domain.
Key Sets are identified with a version number that is unique within its SD. Keys within key sets are identified by a unique
index within the key set. Key Set versions and key indices have to be specified in the PUT KEY command.

The key used for ciphering the key values (e.g. KIc, KID or DEK) of the PUT KEY command is the key with identifier 3
(i.e. DEK). It is a static key.
When replacing or adding key(s) within the same key set, or when updating the key version number of a key set, the

encrypting key to be used is the DEK of the same key version number as the changed key(s).
When creating key set(s), the encrypting key to be used is the DEK of the same key version number as KIc and KID in

the Command Packet containing the PUT KEY command.
The key version number of KIc and KID used to secure the Response Packet is the same as the key version number

indicated in the Command Packet.
The transport security keys (i.e. KIc/KID) used to secure the Response Packet are the same as the ones of the

Command Packet containing the PUT KEY command.

18.2.2 Set Up of Security Domains

The implementation and installation of a SD depends very much on the card implementation and is proprietary for each

manufacturer.

18.2.3 Interoperability regarding Security Domains and GP security

In summary, the following points apply for the interoperability of Security Domains on UICC Java Cards:
SIM Alliance members are interoperable:
• All SIM Alliance members support Security Domains (other than the Issuer Security Domain) for OTA

• The addressed application gets the message in plain format.
• All SIM Alliance members support key management as specified is above.

• All applications must be associated with the ISD or with one other security domain.
• For applications associated with an SD, the keys of the SD are taken for OTA security.

Interoperability Issue

The interface between Card Manager and Security Domains is open. The way to implement security in a SD is not
standardized. The implementation is proprietary and as a consequence it is not possible to load and install
Security Domains in an interoperable way.

18.3 Key Management

18.3.1 Algorithm

The algorithm to be used depends on the DES algorithm specified as DEA in ISO 8731-1.
The algorithm to be used is defined as follows:

• DES in CBC mode is described in ISO/IEC 10116

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 131

• Triple DES in outer-CBC mode is described in "Applied Cryptography: Protocols, Algorithms, and Source Code in
C, 2nd Edition"

• DES in ECB mode is described in ISO/IEC 10116
The initial chaining value for CBC modes is zero.
SIM Alliance members support DES and triple DES in CBC/ECB mode for ciphering and in CBC mode for cryptographic
checksum.
The length of the keys to be used depends on the algorithm used.

If a DES in CBC or ECB mode is used, the key should have a length of eight bytes.
To ensure interoperability, you are advised to use a:

• 16-byte key divided into two keys of eight bytes if triple DES using two different keys is used
• 24-byte key divided into three keys of eight bytes if triple DES using three different keys is used

18.3.2 Key Set Version

The key set version to be used in the KIc and KID bytes refers to a Global Platform key set version number. The key set
version 0 is reserved. Therefore the key set version is then between ‘01’ and ‘0F’.
The key set version ‘11’ is used for UICC Toolkit Parameters DAP and Access Domain DAP verification. The number of
key sets, as well as the number of security domains, may be defined at the personalization step, according to operators’
requirements.

Each package, applet, and instance of an applet loaded on a Java card must be assigned a unique identifier, known as
an application identifier (AID). An AID is a string of between 5 and 16 hexadecimal bytes.
The first five bytes of an AID (the RID) uniquely identify the applet provider, that is, the company supplying the package
or applet. An applet provider must apply for a registered

RID from ISO; examples for RID could be found in chapter § A.2.
The remaining bytes (up to 11) of an AID contain the Proprietary Identifier eXtension (PIX). The PIX uniquely identifies a
package, applet, or applet instance. The PIX is assigned by the applet provider.

The TAR (Toolkit Application Reference) is a 3-byte code used to uniquely identify a second level application (e.g. Toolkit

Application). It is used when targeting an applet instance with an OTA message. Prior to the standard specification
Release 6, an applet instance could have only one TAR; the value of which is defined by the 13th, 14th and 15th byte of

the AID. The standard specification Release 6 allows you to define a list of TARs that are associated with an applet
instance. The TAR list is defined when installing the applet instance; if the TAR list is not defined, then the 13th, 14th

and 15th byte of the AID are used as the unique TAR of the instance.
If the TAR of an applet is not defined (no TAR list defined and the length of the applet instance’s AID is less than 15
bytes), the applet cannot be triggered by OTA.

Developer Tip
The SIM Alliance members suggests to not define a TAR value (TAR length of less than 15 bytes or no TAR list) if
it is not functionally required by the application (e.g. no OTA triggering).

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 132

A AID and TARs (annex)

A.1 AID Format
This section provides a basic description of the AID data format used in Java Card technology. For full details, refer to
ISO 7816-5, AID Registration Category 'D' Format.

The AID format used by the Java Card platform is an array of bytes that can be interpreted as two distinct parts, as
shown in Figure 1. The first part is a five-byte value known as a RID (Registered application provider identifier). The
second part is a variable length value known as PIX (proprietary identifier extension). PIX may have a length between 0

and 11 bytes. Therefore, an AID may have a total length between 5 and 16 bytes.

<--------------------------- Application IDentifier (AID) ----------------------------->

Registered application provider IDentifier
(RID)

Proprietary application Identifier eXtension
(PIX)

<--------------- 5 bytes ----------------> <--------------- 0 - 11 bytes -------------->

ISO controls the assignment of RIDs to companies, with each company obtaining its own unique RID. Companies assign

PIXs for AIDs using their own RIDs.

A.2 Registered application provider IDentifier (RID)
The RIDs dealt with in the present document, as registered by ISO/IEC according to ISO/IEC 7816-5, are:

 RID

ETSI 'A000000009'

3GPP 'A000000087'

Axalto ‘’

Gemplus ‘A0 00 00 00 18’

Giesecke & Devrient ‘D2 76 00 01 18’

Incard ‘A0 00 00 00 95’

Oberthur Card Systems ‘A0 00 00 00 77’

Orga Kartensysteme GmbH ‘D2 76 00 00 28’

A.3 Proprietary application Identifier eXtension (PIX)
The PIX is used at the discretion of ETSI and can contain between 7 and 11 bytes of information. The PIX is coded in

hexadecimal. In all cases, bytes 13, 14 and 15 are reserved for the Toolkit Application Reference (TAR).

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 133

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1.
Ni
bb
le

Figure 27 – Structure of an AID

For further details, refer to technical specification TS 101 220.

A.4 PIX Coding for different Applications

Application Code

Allocated from ETSI:

Application RID ETSI Application Code Document

GSM 'A000000009' '0001' TS 151.011

GSM SIM toolkit 'A000000009' '0002' TS 101.267

API Application

GSM SIM API for Java™ Card 'A000000009' '0003' TS 143.019

UICC API for Java Card™ 'A000000009' "0005" TS 102 241

Allocated from 3GPP:

Application RID 3GPP Application Code Document

3GPP UICC 'A000000087' '1001' TS 131.101

3GPP USIM 'A000000087' '1002' TS 131.102

3GPP USIM toolkit 'A000000087' '1003' TS 131.111

3GPP ISIM 'A000000087' '1004' TS 131.103

API Application

3GPP (U)SIM API for Java
Card™

'A000000087' '1005' TS 31.130

Country Code
To indicate the country of the application provider of the ETSI or 3G standardized application. List of actual country

codes is published by ITU.

In case of API Country Code is not used and set to ‘FF FF’

assigned and registered by

the ETSI secretarial staff

Application code
Country code Application provider code Application provider field

(optional) with up to eight
digits

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 134

Application provider code
9 10 11 12 13 14

 Industry Code '89' for Telecom

Card issuer Code. Coded in BCD
and right justified. Unused digits to
be padded with 'F' on the left

In case of API, Digit 9-12 is not used and set to ‘FF FF’

Application provider field - 8 digits
The use of this field is entirely up to the application provider. It may, for instance, be used to indicate "local" versions,
revisions, etc. of the ETSI or 3G standardized applications. According to ISO/IEC 7816-5, if the AID is 16 bytes long,

then the value 'FF' for the least significant byte (digits 21 and 22) is reserved for future use.

For 2G Applications:
It’s used for the following applications: GSM (‘0001’), GSM SIM toolkit (‘0002’) or GSM SIM API for Java™ Card (‘0003’)

15 16 17 18 19 20 21 22

 Application Provider specific data

Toolkit Application Reference (TAR)

Toolkit Application Reference (TAR) as specified in TS 102 226, is managed by the application provider (i.e. operator in
that case) except for TAR values beginning with hexadecimal value 'B' (most significant bits of digit 15) which are
reserved for future use by the 3GPP and the TAR value '000000' which is reserved for the Issuer Security Domain (see
TS 102 226).

Application Provider specific data is used for application administration purposes.

For 3GPP Applications:
It’s used for the following applications: 3GPP UICC (‘1001’), 3GPP USIM (‘1002’) or 3GPP ISIM (‘1004’)

Digit 15 to 20, coded in BCD, refer to the specification version xx.yy.zz. The coding of xx, yy, and zz is right justified and
padded with '0' on the left.

Example
If the version is 6.5.0 then specification version is '06 05 00'.

Digit 21 to 22 are coded in hexadecimal

15 16 17 18 19 20 21 22

 Application Provider specific data

Specification version xx.yy.zz

Application Provider specific data: for application administration purposes.

For Java Card™ APIs:
It’s used for the following APIs: SIM API (‘0003’), UICC API(‘0005’) or 3GPP (U)SIM API (‘1005’)

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 135

15 16 17 18 19 20 21 22

 If Digit 15 = '1', for relevant
Application Code:
‘0003’ defined in TS 143 019
‘0005’ defined in TS 102 241
‘1005’ defined in 3GPP
TS31.130

API Type, '1' for Java Card

A.5 Toolkit Application Reference (TAR)
The Toolkit Application Reference (TAR) is used to uniquely identify a second level application (e.g. Toolkit Application).

To be addressed, the Toolkit Application needs a first level application (e.g. GSM, USIM application) running.

A second level application may have several TAR values assigned.

Allocation of TAR values

Application TAR Document

Issuer Security Domain

Issuer Security Domain '00 00 00' ETSI TS 102 226

1st level application issuer specific values

Allocated by the 1st level application
issuer

'00 00 01' to 'AF FF FF'

Allocated by the 1st level application
issuer

'C0 00 00' to 'FF FF FF'

Remote File Management Applications

UICC Shared File System 'B0 00 00' and
'B0 00 02' to 'B0 00 0F'

ETSI TS 102 226

SIM File System 'B0 00 10' to 'B0 00 1F' 3GPP TS 31.116

USIM File Systems (may include
UICC Shared file system)

'B0 00 01' and
'B0 00 20 to 'B0 01 1F'

3GPP TS 31.116

RFU 'B0 01 20' to 'B0 FF FF'

Payment Applications

RFU 'B1 00 00' to 'B1 FF FF'

 USAT Interpreter Application

USAT Interpreter Application 'B2 00 00' to 'B2 00 FF' TS 131.114

Reserved for future categories

RFU 'B2 01 00' to 'BF FE FF'

Proprietary toolkit application

Proprietary toolkit application 'BF FF 00' to 'BF FF FF'

A.6 Telecom API Package Version Management

The package AID coding is defined in TS 101.220. The SIM API packages' AID is not modified by changes to Major or
Minor Version.

The major version is incremented if a change to the specification leads to byte code incompatibility with the previous
version.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 136

The minor version is incremented if a change to the specification does not lead to byte code incompatibility with the
previous version.

A.7 SIM API package version management
The following table describes the relationship between each 3GPP TS 43.019 specification version, the SIM API package
AID, and the major and minor versions defined in the export files.

sim.access package sim.toolkit package
TS 03.19/

43.019
version

AID Major,

Minor

AID Major,

Minor

5.5.0 A000000009 0003FFFFFFFF8910710001 2.2 A000000009 0003FFFFFFFF8910710002 2.6

A.8 UICC API package version management
The following table describes the relationship between each TS 102 241 specification version and its UICC API packages

AID and Major, Minor versions defined in the export files.

uicc.access package uicc.toolkit package TS 102
241 AID Major,

Minor
AID Major,

Minor

latest
version!

A0 00 00 00 09 00 05 FF FF FF FF 89 11
00 00 00

1.0 A0 00 00 00 09 00 05 FF FF FF FF 89 12
00 00 00

1.0

uicc.system package TS 102 241

AID Major,
Minor

 A0 00 00 00 09 00 05 FF FF FF FF 89 13
00 00 00

1.0

uicc.access.fileadministration package TS 102 241

AID Major,
Minor

 A0 00 00 00 09 00 05 FF FF FF FF 89 11
01 00 00

1.0

A.9 USIM API for Java Cards package version management
The following table describes the relationship between each TS 31.130 specification version and its packages AID and

Major, Minor versions defined in the export files.
uicc.usim.access package uicc.usim.toolkit package TS

31.130 AID Major,
Minor

AID Major,
Minor

latest
version!

A0 00 00 00 87 10 05 FF FF FF FF 89 13
10 00 00

1.0 A0 00 00 00 87 10 05 FF FF FF FF 89 13
20 00 00

1.0

The package uicc.usim.access contains only constants, therefore it may not be loaded on the UICC.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 137

A.10 Java Card API Packages
The following table shows the AIDs of the packages described in the Java Card Specification 2.2.1:

Package AID

java.lang A0 00 00 00 62 00 01

javacard.framework A0 00 00 00 62 01 01

javacard.security A0 00 00 00 62 01 02

javacardx.crypto A0 00 00 00 62 02 01

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 138

B TLV Coding (annex)

The specification TS 101.220 is no longer updated with corrections or clarifications, it will be done in the Release 7
version of this document only; therefore this document refers to the Rel. 7 rather than Rel. 6 version of the 101.220
specification.

In the ETSI specifications data-objects are used to capsulate information and code it in a Tag-Length-Value construction.

The data transmitted in a TLV data object structure is formatted as follows:

Byte(s) Description Length

1 to T TLV Tag 1 ≤ T ≤ 3

T+1 to T+L TLV Length 1 ≤ L ≤ 4

T+L+1 to
T+L+X

TLV Value X

There are constructed and primitive TLVs existing where the value part of the constructed TLV-Object again can hold
several constructed or primitive TLV-objects.

T L V

T L V T L V ...

constructed

primitive

B.1 Tag coding

According to TS 101.220 the following table shows the encoding of the components for each of the recognized forms of
TLV (see also Note below):

Name of TLV Encoding of tag field Encoding of length field Encoding of value field

BER-TLV ISO 8825-1 see § B.2 ISO 8825-1

COMPACT-TLV ISO 7816-4 ISO 7816-4 ISO 7816-4

COMPREHENSION-TLV TS 101 220, section 7.1.1 see section § B.4 ISO 7816-4

Examples for

• BER-TLV: tags for several templates, like the FCP template, Security attribute template, PIN Status Template
• COMPACT-TLV: historical bytes of the ATR

• COMPREHENSION-TLV: card application toolkit data-objects (proactive commands, envelopes, etc)

A summary of assigned TLV tag-values can be found under TS 101 220, section 7.2. All unassigned tag values are
reserved for future use.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 139

B.2 BER-TLVs

The coding of a BER-TLV tag field depends on the usage of the TLV-object. Following table explains the tag encoding
scheme:

Table: First byte of BER-TLV tag fields according to ISO 7816-4

b8/b7 b6 b5-b1

00
01
10
11

 universal class
application class
context specific class
private class

 0
1

 primitive encoding
constructed encoding

 xxxxx
11111

tag number from zero to thirty (short tag field, e.g. consisting of a single byte)
tag number greater than thirty (long tag field, e.g. consisting of 2 or 3 bytes)

B.3 COMPACT-TLVs

According to TS 101.220 the COMPACT-TLV data objects are used for the historical bytes of the ATR only.
The COMPACT-TLV data objects are deduced from interindustry BER-TLV data objects with tag field '4X' and length field
'0Y'. The coding is 'XY' followed by a value field of 'Y' bytes fixing one or more data elements. In this clause, quartet 'X'

is referred to as the compact tag and quartet 'Y' as the compact length.

B.4 COMPREHENSION-TLVs

The COMPREHENSION-TLV data objects are not encoded as BER-TLV tag fields. They are primitive data objects defined

in [101 220 R7] for the specific purpose of indicating the Comprehension Required Flag (CR) in the tag.

The value of the first byte identifies the format used.

First byte value Format

'00' Not used

'01' to '7E' Single byte

'7F' Three-byte

'80' Reserved for future use

'81' to 'FE' Single byte

'FF' Not used

The specification [101 220 R7] defines only COMPREHENSION-TLVs with one byte length.
The same value in the different formats represents the same data object.

Unless otherwise stated, for COMPREHENSION-TLV it is the responsibility of the UICC application and the terminal to
decide the value of the Comprehension Required (CR) flag for each data object in a given command.
Handling of the CR flag is the responsibility of the receiving entity.

CR Value

Comprehension required 1

Comprehension not required 0

Single byte format

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 140

The tag is coded over one byte.
8 7 6 5 4 3 2 1

CR Tag value

CR: Comprehension required for this object.

Three-byte format
The tag is coded over three bytes.

Byte 1 Byte 2 Byte 3

 8 7 6 5 4 3 2 1

Tag value format = '7F' CR Tag value

Tag value format: Byte 1 equal to '7F' indicates that the tag is in the three-byte format.

• CR: Comprehension required for this object. Use and coding is the same as in single byte format.
• Tag value: Coded over 15 bits, with bit 7 of byte 2 as the most significant bit. Range from '00 01' to '7F FF'.

B.5 Length coding

The length of the TLV objects is coded on one to four bytes, depending on the amount of bytes coded in the value-part.

As defined in section 7.2 of TS 101.220 seperate rules apply for the length-coding of :

• COMPACT-TLV:

The maximum length of the value part is limited to 65535 bytes and therefore maximum 3 lengths bytes are
allowed according to ISO 7816-4.

• BER-TLV and COMREHENSION-TLV

For BER-TLV and COMPREHENSION-TLV data-objects a maximum number of 4 length-bytes is allowed.

Length Byte 1 Byte 2 Byte 3 Byte 4

0-127 length ('00' to '7F') not present not present not present

128-255 '81' length ('80' to 'FF') not present not present

256-65535 '82' length ('01 00' to 'FF FF') not present

65536 - 16777215 '83' length ('01 00 00' to 'FF FF FF')

Note:

Even if TS 101.220 refers to BER coding with this table, the correct naming would be DER (distinguished encoding rules)
coding, which is a subset of BER. With DER it is mandatory to use the shortest possible length coding. E.g. if you want to
code T=C0, V= AA BB CC, following rules apply:

• C0 81 03 AA BB CC(valid BER coding according to ISO 7816-4 but not allowed for TS 101.220)
• C0 03 AA BB CC (valid DER coding according to ISO 8825-1, mandated in TS 101.220)

B.6 Value coding

The value of a TLV is defined in the appropriate section of the ETSI specification, where the functionality or the tag-field

is described.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 141

C Administrative Commands (annex)

This document gives a functional description of the administrative commands, their respective responses, associated
status words, error codes and their coding supported by any smart-card manufacturer that is a SIMAlliance member.
These new commands allow in particular creating, deleting and resizing a file in an application since the Release 6 of the
3GPP specifications.

C.1 CREATE FILE

Definition and scope
This function allows the creation of a new file or directory under the current directory. The application that calls the
CREATE FILE function is supposed to have fulfilled the access condition of the current directory for the CREATE FILE

function.
When creating an EF with linear fixed or cyclic structure the UICC creates directly as many records as allowed by the

requested file size. The memory space is allocated for the created file and filled with FF (other behaviours are
proprietary and to define using tags ‘85’ or ‘A5’).

After the creation of a DF, the current directory will be the newly created file. In case of an EF creation, the current EF
will be the newly created file too and the current directory is unchanged.
After creation of an EF with linear fixed structure, the record pointer is not defined. After creation of an EF with cyclic
structure, the current record pointer is on the last created record. After creation of an EF with BER TLV structure, the
current tag pointer is undefined.
Once the file is created, some data may have to be updated to take into account this new file creation. For example, an
EF creation may require updating the EFARR with the access conditions of the file just created.

Interoperability issue
SIMAlliance members cannot guarantee that ADF creation can be performed by this command.

Command message
As an UICC command, the CREATE FILE is coded according to table 1.

Table 1: CREATE FILE command message

Code Value

CLA 0x

INS E0

P1 '00'

P2 '00'

Lc Length of the subsequent data field

Data field Data sent to the UICC

Le Not present

Data field (TLV) needed in the command message
The input parameters of the create file are included in a TLV “0x62” + Length that encapsulates the whole File Control

Parameters.

Then the mandatory sub TLV objects are:

• Tag 0x82: File Descriptor that specifies if the file to create is shareable or not, if it is an EF, a DF or an ADF
and the type of the file (transparent, linear fixed, cyclic, BER-TLV). In case of linear fixed and cyclic files, the

record length must be present
• Tag 0x83: File ID (2 bytes)

Interoperability issue
It’s not specified, and so not interoperable, meaning of this parameter in case of ADF creation.

• Tag 0x84: ADF name / AID, only present in case of ADF creation

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 142

• Tag 0x8A: Life Cycle Status Information, it defines the status of the file after creation (the status of a file
object is linked to the Activate/Deactivate commands)

• Tag 0x8C, 0xAB or 0x8B: Security attributes that respectively mean compact, expanded or referenced.
SIMAlliance members guarantee the support of referenced security attributes tag ‘8B’ that uses EFARR in one of

the parent DF of the current location. See 6.3.2 for further details.
Interoperability issue
Mechanisms to specify 2G security attributes (i.e. the access conditions valid when the card is put in a 2G mobile)
are not specified by ETSI specification and so they are not interoperable.

• Tag 0x80/0x81: Size of the EF (Tag 0x80) or DF/ADF (Tag 0x81). It doesn’t include the size of the structural

information for the created object. It is the size returned in the FCP information provided in a response to a
SELECT APDU command and labeled "Reserved File Size" for EF. For DF creation, the tag ‘81’ may be ignored.

• Tag 0xC6: PIN status template data object needed only in case of DF creation

Interoperability issue

SIMAlliance members cannot guarantee that cards behavior is interoperable for this TLV. However it is
recommended to include it in the CREATE command as it is a mandatory field. This tag may be ignored too.

• Tag ‘A5’: Proprietary tags can be used to define how to fill created EFs (), to specify the BER-TLV maximum

file size, to define a specific file information or other proprietary behaviors that may vary from supplier to
supplier.

Limitations:
The maximum number of EF for a given DF is 255 (limitation from the answer to a select).
The maximum size of an EF is 32k as the read binary cannot access to more than 32k (due to SFI in P1P2 parameters).

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 143

TLV graphic representation

Figure 28 – TLV structure for the CREATE command

C.2 DELETE FILE

Definition and scope
This command performs the deletion of an EF immediately under the current DF, or of a DF with its complete sub-tree.

• Prior to the execution of a DELETE FILE command by the application, it is supposed to have fulfilled the access

condition "DELETE FILE" of the object to be deleted. After successful completion, the current directory is
unchanged and no EF is selected in case of an EF deletion.

• If a DF is to be deleted, the application is supposed to have fulfilled the access condition "DELETE FILE (self)"
of the DF to be deleted. After successful completion the parent directory is selected and no EF is selected.

• If an ADF is to be deleted, the application is supposed to have fulfilled the access condition "DELETE FILE

(self)" of the ADF to be deleted and the ADF cannot be currently selected on another logical channel. After
successful completion the MF is selected and no EF is selected.

Interoperability issue
SIMAlliance members cannot guarantee that ADF deletion can be performed by this command.

 Mandatory Tag

 Conditional Tag

 Mandatory Length

 Conditional Length

 Mandatory Value

 Conditional Value

0x62

L

0x83

0x02

File ID

0x82

0x02

or
0x04

File
Descriptor

0x21

Record Length
(EF Linear fixed & cyclic)

0x84

L

AID (ADF only)

0x8A

0x01

LCSI

0x8B

L

Security Attrributes

0x80
or

0x81

L

EF (0x80) or DF/ADF file length

0xC6

L

PIN Status DO + Key references (DF only)

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 144

If a file is indicated as not-shareable and is the current file of one application, then another application cannot delete it.
If a file is indicated as shareable then it can be deleted by one application independently of whether or not the file is the

current file of any other application. So in this case, if another application is using concurrently the deleted file, the
processing by the application may fail. If a DF is shareable and an application, having the appropriate rights, requests to

delete it, the whole DF including all EFs can be deleted whatever shareable status they have.

Interoperability issue:
SIMAlliance members cannot guarantee that deletion of shareable EF/DF will result in the same final file context

for other applications.

SIMAlliance members cannot guarantee that deletion of mapped files is interoperable.

After successful completion of this command, the deleted file can no longer be selected. The resources held by the file

are released and the memory used by this file is set to the logical erased state. It is not possible to interrupt this process
in such a way that the data can become recoverable.

Command message
The DELETE FILE command message is coded according to table 2.

Table 2: DELETE FILE command message

Code Value

CLA 0x

INS E4

P1 '00'

P2 '00'

Lc Not present or length of the subsequent data field

Data field Data sent to the UICC (optional file ID on 2 bytes)

Le Not present

FID is mandatory in the JAVA API.
When not present, the current selected EF/DF/ADF on the considered logical channel is deleted.

C.3 RESIZE FILE

Definition and scope
This command allows modifying the memory space allocated to the MF, a DF/ADF, a transparent file, a linear fixed file or
a BER-TLV structured EF under the current directory (MF, DF/ADF). This command is not allowed for a cyclic file. If the

RESIZE FILE command is used for an ADF, this ADF can only be the ADF of the current active application on this logical
channel. MF or DF/ADF resizing operation may not be supported.

The RESIZE FILE access condition is indicated in the access rules of the targeted object after the AM_DO tag '84'. If this
TLV object contains the value D4, then the RESIZE FILE command can be applied on this object.

In case of successful execution of the command, the current file or directory on which the command was applied is

selected. If the RESIZE FILE command was performed on a linear fixed file the record pointer is undefined and on a
BER-TLV structured EF the tag pointer is undefined. The Total File Size, if applicable, and the File Size TLV object

defined in the FCP template of the modified file is updated accordingly. The allocated memory space is updated
according to the new data size. Note that for a linear fixed file, the RESIZE FILE command modifies the number of
records but doesn't change the record length.

After an unsuccessful execution of the command, the current selected file and directory remains the same as prior to the
execution. In this case, the card restores the previous context (the resize command is an atomic operation).

In case the size of a linear fixed or transparent EF is increased:

• the extension data is appended to the end of the existing data
• the data contained in the previously allocated memory space are not modified by the RESIZE FILE command

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 145

• the newly allocated memory space is initialized with 'FF' unless another value is specified in a proprietary TLV
object ‘85’ or ‘A5’.

In case the size of a linear fixed or transparent EF is decreased:

• the removed data are deleted and removed from the end of the existing data and
• the remaining data already contained in the previously allocated memory space are not modified by the RESIZE

FILE command

For a BER-TLV structured EF, the Reserved File Size or the Maximum File Size or both can be resized. If the Maximum
File Size is decreased and the new size conflicts with the used size, then depending on the mode chosen in P1

parameter, the command is rejected or all objects in the file are deleted.

Command message
The RESIZE FILE command message is coded according to table 3.

Table 3: RESIZE command message
Code Value

CLA 8x

INS D4

P1 00 (or 01 for BER-TLV EF – mode
selection)

P2 '00'

Lc Length of the subsequent data field

Data Field Data sent to the ICC

Le Not present

Data field sent in the command message

There is at most one occurrence of the following Tags.

• Tag '83': It contains the File ID of the object (MF, ADF, DF or EF) to resize. If the resize operation target is the

current ADF of the application, the FID '7FFF' can be used.
• Tag '80': File Size (Reserved File Size). This TLV is needed only in case of EF resize operation. It contains the

New File Size for this EF. This size is the new number of bytes allocated for the body of the EF (i.e., like in the

Create File command, it does not include structural information). In the case of an EF with linear fixed
structure, the new File Size is the record length multiplied by the number of records of the EF; otherwise the

command is rejected (see previous note). This New File Size low limit is at least the size needed by one record.
For transparent files, if this size is set to '00', all the content of the EF is removed but the EF is not deleted (it is

then exactly as if the EF was created with a size set to '00') and the structural information is still available. For
BER-TLV structured EF, if File Size is present, it indicates the minimum number of bytes reserved for the body
of the file. The value includes administrative overhead (if any) that is required to store TLV objects, but not the
structural information for the file itself. The current content of the file remains still the same whatever is the
new reserved file size value (in case of increase of the current file size, below is the decrease case).

• Tag '81': Total File Size. This TLV is only used in case of MF or a DF/ADF resize operation. It contains the New
Total File Size for the MF or this DF/ADF. This size is the new amount of physical memory allocated for the MF

or a DF/ADF (i.e. it does not include structural information) for card not implementing dynamic allocation of
memory. The amount of EFs or DFs which may be created is implementation dependent. The MF or DF/ADF
can be resized to '00' only if it does not contain any file. In this case, the structural information is still available
for the MF or DF/ADF. For an ADF, the resizing to '00' does not affect EFDIR and any other information

necessary to administer an application.
• After tag 'A5', there can be some other optional or proprietary TLV objects, for example to define with which

pattern use to fill the created space resizing an object with a higher size. The full support of these features may

vary from a card supplier to another.
• About the optional sub TLV object with tag ‘86’ (Maximum File Size for a BER-TLV structured EF located inside

the TLV beginning by ‘A5’), this TLV object will only be provided if a BER-TLV structured EF is resized. The
Maximum File Size indicates the new maximum number of bytes that can be allocated for the body of the file.
As previously, this value includes administrative overhead (if any) that is required to store TLV objects, but not

the structural information for the file itself.

In case the New Maximum File Size is decreased and the size used by the existing TLV is greater than the New Maximum
File Size:

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 146

• If P1 indicates Mode 0, all existing TLV objects are deleted (the file itself is not deleted). The New Maximum
File Size is assigned to the file.

• If P1 indicates Mode 1, no action is performed and it returns an error telling the conditions of use are not
satisfied.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 147

D SIM Alliance Interoperable Loader (annex)

Description of SIM Alliance Tools Implementing Interoperability

Figure 29 – SIM Alliance Interoperable Loader Architecture

The SIM Alliance Interoperable Loader is a tool designed by the members of the SIM Alliance Working Group on Java

Interoperability to provide an interoperable way of downloading a SIM Toolkit application into a GSM Java Card by the
means of OTA. Especially the second version of the loader tool is meant to be the implementation of an interoperable
interpretation of the ETSI 102 225 specification.

java Sun JDK 1.2.2

class

cap

.install

saved

installation
paramters

Sun Converter 2.1.2

cap2ijc

ijc2ldr

ijc

ldr

clr

APDU-Dispatcher

GSM Java Card in
PC/SC Reader

Input files
external
modules

Answer Messages

Architecture of the SIM Alliance Interoperable Loader

GUI intermediary files

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 148

The first step in the Interoperable Loader tool chain is the production of a Sun compliant .cap file. The tool is capable of
processing .java or .class files. Java source code is compiled to give .class files with the use of Sun’s JDK. For reasons of
interoperability we recommend to use the JDK 1.4.1. Cap files are produced from class files with the help of the

converter 2.2.1 from Sun Microsystems. The second version of the loader also accepts .cap as input and extracts the
corresponding AIDs directly from the file.

In the second step of the Interoperable Loader tool chain, the cap file is converted to a .ijc file (interoperable java cap

file) by the cap2ijc converter. In this conversion step, the standard Sun cap is merely reorganized to give a stream of
bytes that can be loaded on to any Java Card.

The last part of the Interoperable Loader tool chain is the ijc2ldr-converter, which packs the stream of bytes contained in
.ijc-files into Open Platform commands as demanded by the ETSI 102 226 specification and the underlying Global
Platform specification 2.1, and the Open Platform commands into ETSI 131.115 conforming SMS envelopes. In its
second version, the tool supports the minimum security level demanded by ETSI, which includes encoding of a MAC with

an 8 Byte simple DES key in CBC mode. The DES key and the number of the corresponding key set on the card are
directly entered in the user interface of the loader. It is also possible to demand a Proof of Receipt to which no security

is applied. The second version of the loader is still capable of loading without any security the same way the first version
worked, but this procedure is not standardized and therefore not interoperable. The APDU sequence resulting from the
last step of the Tool Chain is stored in a .ldr-file. Also, a corresponding .clr-file is created which contains the command
sequence to de-install the applet.

After all relevant command sequences have been created and stored, the loader tool uses the PC/SC middleware
architecture for passing the commands to the GSM Java Card. Therefore, a PC/SC compliant reader has to be used and
the corresponding PC/SC services of the operating system must be installed and activated. All answers from the card are

passed back to the user interface and a log of the exchanged APDUs can be viewed and stored.

Interoperability Stepping Stones

 Release 6 Version 1.00 Page 149

E Change History (annex)

This annex lists all changes made to the present document since its initial approval.
Meeting VERS REL SUBJECT Resulting

Version

First issue of the Stepping Stones Rel6 16/01/06 1.00 6

1.00

