
Open Mobile API
Specification
Version 3.0

November 2014

Published by now Trusted Connectivity Alliance

Copyright © 2014 Trusted Connectivity Alliance ltd.
The information contained in this document may be used, disclosed and reproduced without the prior
written authorization of Trusted Connectivity Alliance. Readers are advised that Trusted Connectivity
Alliance reserves the right to amend and update this document without prior notice. Ownership of the
OMAPI Specification has been transferred to GlobalPlatform. All future releases will be available on
the GlobalPlatform website.

Securing the future of mobile services Open Mobile API Specification 2

Security, Identity, Mobility

Table of Contents

1. Terminology ... 6

1.1 Abbreviations and Notations .. 6

1.2 Terms .. 6

2. Informative References .. 7

3. Overview .. 8

4. Architecture .. 9

5. API Description .. 10

6. Transport API ... 11

6.1 Overview ... 11

6.2 Object interface ... 11
6.2.1 Usage pattern.. 12
6.2.2 Class: SEService .. 13
6.2.3 Class (or interface): SEService:CallBack ... 13
6.2.4 Class: Reader ... 14
6.2.5 Class: Session .. 14
6.2.6 Class: Channel .. 17

6.3 Procedural interface .. 19
6.3.1 Usage pattern.. 20
6.3.2 SEService mapping .. 21
6.3.3 Reader mapping.. 22
6.3.4 Session mapping... 23
6.3.5 Channel mapping .. 25

7. Service Layer APIs .. 28

7.1 Overview ... 29

7.2 Class diagram ... 30

7.3 Usage pattern .. 31

7.4 Service API Framework ... 32
7.4.1 Class: Provider .. 32

7.5 Crypto API ... 33
7.5.1 Extensibility ... 34
7.5.2 Extending by Shared Libraries .. 34
7.5.3 Extending by Applicative plugins .. 35
7.5.4 Integration with the Transport API .. 36

7.6 Discovery API .. 36

Securing the future of mobile services Open Mobile API Specification 3

Security, Identity, Mobility

7.6.1 Class: SEDiscovery .. 36
7.6.2 Class: SERecognizer .. 38
7.6.3 Class: SERecognizerByATR ... 38
7.6.4 Class: SERecognizerByHistoricalBytes .. 38
7.6.5 Class: SERecognizerByAID .. 38

7.7 File management ... 39
7.7.1 Class: FileViewProvider .. 39
7.7.2 Class: FileViewProvider:FCP .. 44
7.7.3 Class: FileViewProvider:Record ... 47

7.8 Authentication service ... 48
7.8.1 Class: AuthenticationProvider ... 48
7.8.2 Class: AuthenticationProvider:PinID ... 51

7.9 PKCS#15 API .. 53
7.9.1 Class: PKCS15Provider .. 54
7.9.2 Class: PKCS15Provider:Path ... 56

7.10 Secure Storage ... 58
7.10.1 Class: SecureStorageProvider .. 58
7.10.2 Secure Storage APDU Interface ... 61
7.10.3 Secure Storage APDU transfer ... 67
7.10.4 Secure Storage PIN protection ... 70

8. Recommendation for a Minimum Set of Functionality 71

9. Secure Element Provider Interface .. 72

10. Access Control ... 73

11. History ... 74

Annex A: Ansi-C Reference Header for Transport Procedural Interface .. 75

Securing the future of mobile services Open Mobile API Specification 4

Security, Identity, Mobility

Table of Figures

FIGURE 4-1: ARCHITECTURE OVERVIEW .. 9

FIGURE 6-1: TRANSPORT API OVERVIEW .. 11

FIGURE 6-2: TRANSPORT API CLASS DIAGRAM .. 12

FIGURE 6-3: TRANSPORT API PROCEDURE DIAGRAM ... 20

FIGURE 7-1: SERVICE API OVERVIEW ... 29

FIGURE 7-2: SERVICE API CLASS DIAGRAM WITH PROVIDER CLASSES .. 30

FIGURE 7-3: SERVICE API CLASS DIAGRAM WITH SEDISCOVERY CLASSES .. 31

FIGURE 7-4 CRYPTO API ARCHITECTURE .. 34

FIGURE 7-5: CRYPTO API ARCHITECTURE WITH PLUGIN APPLICATIONS ... 35

FIGURE 7-6: DISCOVERY MECHANISM .. 36

FIGURE 7-7: FILE MANAGEMENT OVERVIEW ... 39

FIGURE 7-8: AUTHENTICATION SERVICE OVERVIEW .. 48

FIGURE 7-9: PKCS#15 SERVICE OVERVIEW .. 53

FIGURE 7-10: SECURE STORAGE SERVICE OVERVIEW .. 58

FIGURE 7-11: SECURE STORAGE APPLET OVERVIEW ... 61

FIGURE 7-12: CREATE SS ENTRY OPERATION ... 68

FIGURE 7-13: UPDATE SS ENTRY OPERATION ... 68

FIGURE 7-14: READ SS ENTRY OPERATION ... 69

FIGURE 7-15: LIST SS ENTRIES OPERATION .. 69

FIGURE 7-16: DELETE SS ENTRY OPERATION .. 70

FIGURE 7-17: DELETE ALL SS ENTRIES OPERATION ... 70

FIGURE 7-18: EXIST SS ENTRY OPERATION ... 70

Securing the future of mobile services Open Mobile API Specification 5

Security, Identity, Mobility

Table of Tables

TABLE 1-1: ABBREVIATIONS AND NOTATIONS... 6

TABLE 1-2: TERMS ... 6

TABLE 2-1: INFORMATIVE REFERENCES .. 7

TABLE 7-1: CREATE SS ENTRY COMMAND MESSAGE .. 62

TABLE 7-2: CREATE SS ENTRY RESPONSE DATA .. 62

TABLE 7-3: CREATE SS ENTRY RESPONSE CODE ... 62

TABLE 7-4: DELETE SS ENTRY COMMAND MESSAGE .. 63

TABLE 7-5: DELETE SS ENTRY RESPONSE CODE .. 63

TABLE 7-6: SELECT SS ENTRY COMMAND MESSAGE .. 63

TABLE 7-7: SELECT SS ENTRY RESPONSE DATA .. 64

TABLE 7-8: SELECT SS ENTRY RESPONSE CODE .. 64

TABLE 7-9: PUT SS ENTRY DATA COMMAND MESSAGE ... 64

TABLE 7-10: PUT SS ENTRY DATA RESPONSE CODE .. 65

TABLE 7-11: GET SS ENTRY DATA COMMAND MESSAGE... 65

TABLE 7-12: GET SS ENTRY DATA RESPONSE DATA .. 66

TABLE 7-13: GET SS ENTRY DATA RESPONSE CODE .. 66

TABLE 7-14: GET SS ENTRY ID COMMAND MESSAGE... 66

TABLE 7-15: GET SS ENTRY ID RESPONSE DATA .. 66

TABLE 7-16: GET SS ENTRY ID RESPONSE CODE .. 67

TABLE 7-17: DELETE ALL SS ENTRIES COMMAND MESSAGE .. 67

TABLE 7-18: DELETE ALL SS ENTRIES RESPONSE CODE ... 67

TABLE 11-1: HISTORY .. 74

Securing the future of mobile services Open Mobile API Specification 6

Security, Identity, Mobility

1. Terminology

The given terminology is used in this document.

1.1 Abbreviations and Notations

Table 1-1: Abbreviations and Notations

Abbreviation Description

SE Secure Element

API Application Programming Interface

ATR Answer to Reset (as per ISO/IEC 7816-4)

APDU Application Protocol Data Unit (as per ISO/IEC 7816-4)

ISO International Organization for Standardization

ASSD
Advanced Security SD cards (SD memory cards with an embedded
security system) as specified by the SD Association

OS Operating System

RIL Radio Interface Layer

SFI Short File ID

FID File ID

FCP File Control Parameters

MF Master File

DF Dedicated File

EF Elementary File

OID Object Identifier

DER Distinguished Encoding Rules of ASN.1

ASN.1 Abstract Syntax Notation One

OMA Open Mobile Alliance

DM Device Management

1.2 Terms

Table 1-2: Terms

Term Description

Secure Element

A Secure Element (SE) is a tamper-resistant component which is used
to provide the security, confidentiality, and multiple application
environments required to support various business models. For example
UICC/SIM, embedded Secure Element and Secure SD card.

Applet
A general term for a SE application. An application as described in [1]
which is installed in the SE and runs within the SE. For example a
JavaCard™ application or a native application.

Application
Device/terminal/mobile application. An application which is installed in
the mobile device and runs within the mobile device.

Session
An open connection between an application on the device (e.g. mobile
phone) and a SE.

Channel
An open connection between an application on the device (e.g. mobile
phone) and an applet on the SE.

Securing the future of mobile services Open Mobile API Specification 7

Security, Identity, Mobility

2. Informative References

Table 2-1: Informative References

Specification Description

[1] GP v2.2 GlobalPlatform Card Specification v2.2

[2] ISO/IEC 7816-4:2005
Identification cards - Integrated circuit cards - Part 4: Organisation,
security and commands for interchange

[3] ISO/IEC 7816-5:2004
Identification cards - Integrated circuit cards - Part 5: Registration of
application providers

[4] ISO/IEC 7816-15:2004
Identification cards - Integrated circuit cards with contacts - Part 15:
Cryptographic information application

[5] PKCS #11 v2.20
Cryptographic Token Interface Standard
Go to following website for PKCS#15 documentation:
http://www.rsa.com/rsalabs/node.asp?id=2133

[6] PKCS #15 v1.1 Cryptographic Token Information Syntax Standard

[7] Java™ Cryptography
Architecture API
Specification & Reference

Go to the following website for JCA documentation:
http://download.oracle.com/javase/1.4.2/docs/guide/security/CryptoS
pec.html

[8] ISO/IEC 8825-1:2002 |
ITU-T Recommendation
X.690 (2002)

Information technology – ASN.1 encoding rules: Specification
of Basic Encoding Rules (BER), Canonical Encoding Rules
(CER) and Distinguished Encoding Rules (DER)

[9] GlobalPlatform Secure
Element Access Control,
v1.0

Specification for controlling access to SEs based on access policies
that are stored in the SEs

http://www.rsa.com/rsalabs/node.asp?id=2133
http://download.oracle.com/javase/1.4.2/docs/guide/security/CryptoSpec.html
http://download.oracle.com/javase/1.4.2/docs/guide/security/CryptoSpec.html

Securing the future of mobile services Open Mobile API Specification 8

Security, Identity, Mobility

3. Overview

The API specified in this document enables mobile applications to access different SEs in mobile

devices, such as SIMs or embedded SEs.

This specification provides interface definitions and UML diagrams to allow the implementation on

various mobile platforms and in different programming languages.

If namespace is supported by the programming language, it shall be org.simalliance.openmobileapi, For

the procedural interface the prefix “OMAPI_” is used instead.

Securing the future of mobile services Open Mobile API Specification 9

Security, Identity, Mobility

4. Architecture

The following picture provides an overview of the Open Mobile API architecture.

The architecture is divided into three functional layers:

 The Transport Layer is the foundation for the Service Layer APIs. It provides general access to SEs

when an application is accessing it via the generic Transport API. The Transport Layer uses APDUs

to access a SE (see chapter 6 for details).

 The Service Layer provides a more abstract interface to various functions on the SE. They will be

much easier to use by application developers than the generic transport API. One example could be

an email application that uses a sign() function of the Crypto API and which lets the Crypto API do all

the APDU exchange with the SE (rather than handle all the required APDUs directly in the email

application).

 The Application Layer represents the various applications that make use of the Open Mobile API.

Figure 4-1: Architecture overview

The architecture can be mapped to different OS and might look different depending on the OS.

The description of the APIs uses an abstraction level that allows an easy implementation in different

programming languages (e.g. Java or C++).

Further

Functions

Further

Functions

Mobile Applications

Transport

A
c
c

e
s

s
 C

o
n

tr
o

l

SIM Plug in

APIs

G
e
n

e
ri

c

T
ra

n
s
p

o
rt

Crypto API

(PKCS / JCE)

Crypto

provider

F
il
e

M
a
n

a
g

e
m

e
n

t

A
u

th
e
n

ti
c
a

ti
o

n

S
e
c
u

re
 S

to
ra

g
e

ASSD Plug in
S

e
c
u

re
 E

le
m

e
n

t
P

ro
v
id

e
r

In
te

rf
a
c
e

Further SE
Further SE

Mobile Device

Secure Elements (e.g. SIM, Secure µSD, …)

SE

provider
Test SpecificationsMobile Applications

Storage File system
Further

Functions

Access

Control

T
ra

n
s
p

o
rt

L
a
y

e
r

S
e
rv

ic
e

L
a
y

e
r

A
p

p
li
c
a
ti

o
n

L
a
y

e
r

D
is

c
o

v
e
ry

P
K

C
S

#
1
5

Securing the future of mobile services Open Mobile API Specification 10

Security, Identity, Mobility

5. API Description

In general the SIMalliance Open Mobile API defines an interface which enables a software platform that

supports object oriented concepts, such as Exceptions or objects and instances, to access a SE. For

the Transport API, chapter 6.2 defines an additional interface that is intended for software platforms

where such an interface is not available, e.g. an ANSI-C platform.

The interface and data types are not bound to a specific software platform or programming language

but defined through a logical type that can be mapped accordingly to the corresponding platform

representation.

The following types are used to describe return values, parameters and errors. If supported by the

platform, errors may be mapped to exceptions.

Value types

Boolean: A primitive type, can be true or false.

Int: A primitive type, mapped to the integer of the platform.

Byte[]: An array of single byte (8 bits) values.

String: A string of characters.

Context: An object representing the execution context of an application (only for object oriented

languages).

Void: Not a type, indicates that the method has no return value.

RESULT: Return value of a function call. Typically mapped into a primitive 'int' data value (only for

procedural interface).

Handle: A handle represents the connection towards a specific reader or session or channel.

Typically mapped into a primitive 'int' or 'long' data value. For security reasons, the

handles should be random enough in order to avoid brute-force guessing by other

applications (only for procedural interface).

Error/return types:

Success: No error was encountered (only for procedural interface).

NullPointerError: Raised when NULL is given where data is required.

IllegalParameterError: Raised when a method is given an incorrect parameter (e.g. bad format

for an APDU).

IllegalStateError: Raised when used in the wrong context (e.g. being closed).

SecurityError: An error related to security conditions not being satisfied.

ChannelNotAvailableError: An error occurs if the basic channel is blocked/busy or if there is no

more logical channel available.

NoSuchElementError: Raised when an AID is not available.

IllegalReferenceError: An error occurs if the reference cannot be found.

OperationNotSupportedError: An error occurs if the operation is not supported.

IOError: An error related to communication (I/O).

GeneralError: A general error occurred - no further diagnosis (only for procedural

interface).

The methods are described as followed:

<return value type> <method name> (<parameter1 type> <parameter1 name> …)

Securing the future of mobile services Open Mobile API Specification 11

Security, Identity, Mobility

6. Transport API

The Transport API, as part of the Open Mobile API, provides a communication framework to SEs

available in the Open Mobile device.

6.1 Overview
The role of the Transport API is to provide the means for applications to access the SE(s) available

on the device. The access provided is based on the concepts defined by ISO/IEC 7816-4:

 APDUs: the format of the messages which are exchanged with the SE, basically a byte array,

is sent to the SE (or more precisely to an applet in the SE) and the SE responds with another

byte array. For details of the exact formatting of such byte arrays, refer to ISO/IEC 7816-4.

 Basic and Logical Channels: the communication abstraction to the SE: Channels are the way

to transmit APDUs, and can be opened simultaneously (although APDUs can be sent one at a

time, by waiting for the response before sending the next APDU).

This API relies on a ‘connection’ pattern. The client application (running on the device connected

to the SE, e.g. the phone) opens a connection to the SE (a ‘session’) and then opens a logical or

basic channel to an applet running in the SE.

On top of this pattern, there are a number of constraints that are enforced by the system.

An application cannot send ‘channel management’ APDUs on its own, as this would break the

isolation feature given by the logical channel. Once a channel is opened, it is allocated to

communicate with one and only one applet in the SE. In the same manner, the SELECT by DF

name APDU cannot be sent by the terminal application.

The restrictions for the system should be implemented in the modules that are directly handling

the communication with the SE and not in the API itself to ensure that attackers cannot overcome

the APDU filters. Thus if possible, the baseband should take care of the filtering or at least the

RIL that communicates with the baseband.

Figure 6-1: Transport API overview

6.2 Object interface
This class diagram contains all classes of the Transport API. The SEService class realizes a

connector to the SE framework system and can be used to retrieve all SE readers available in the

Secure Element (SE)

Applet

Mobile Device

Open Mobile API

Transport API

Device Application

Securing the future of mobile services Open Mobile API Specification 12

Security, Identity, Mobility

system. The Reader class can be used to access the SE connected with the selected reader. The

Session class represents a session to an SE established by the reader and allows different

communication channels to be opened represented by the Channel class.

Session

Reader getReader()
byte[] getATR()
void close()
boolean isClosed()
void closeChannels()
Channel openBasicChannel(byte[] aid)
Channel openLogicalChannel(byte[] aid)
Channel openBasicChannel(byte[] aid, Byte P2)
Channel openLogicalChannel(byte[] aid, Byte P2)

Channel

void close()
boolean isBasicChannel()
boolean isClosed()
byte[] getSelectResponse()
Session getSession()
byte[] transmit(byte[] command)
boolean selectNext()

*

org.simalliance.openmobileapi

Reader

String getName()
SEService getSEService()
boolean isSecureElementPresent()
Session openSession()
void closeSessions()

SEService

SEService(Context, Callback)
Reader[] getReaders()
boolean isConnected()
void shutdown()
String getVersion()

Callback

serviceConnected(SEService)

* *

Figure 6-2: Transport API class diagram

6.2.1 Usage pattern

The usage pattern of the Transport API is as follows:

1. The application gets access to the SE service(s):

It creates an SEService class, passing an object implementing the SEService.Callback

interface, whose serviceConnected method is called asynchronously when the connection is

established.

This does not represent a connection with the SE itself, but with the subsystem implementing

the SE access functionality.

2. The application enumerates the available readers.

Readers are the slots where SEs are connected (in a removable or non-removable manner).

Once the user or an application-specific algorithm has selected a Reader, then the application

opens a session on this reader.

3. With this session, the application can retrieve the ATR of the SE, and if it matches with one of

the known ATRs, it can start opening channels with applets in the SE.

4. To open a channel, the application will use the AID of the applet or use the default applet on

the newly opened channel.

5. Then the terminal application can start transmitting APDUs to the applet.

6. Once done, the application can close any existing channels or even sessions, and its

connection to the SEService.

Securing the future of mobile services Open Mobile API Specification 13

Security, Identity, Mobility

6.2.2 Class: SEService

The SEService realizes the communication to available SEs on the device.

This is the entry point of this API. It is used to connect to the infrastructure and get access to a

list of SE readers.

(a) Constructor: SEService(Context context, SEService.CallBack listener)

Establishes a new connection that can be used to connect to all the SEs available in the

system. The connection process can be quite long, so it happens in an asynchronous

way. It is usable only if the specified listener is called or if isConnected() returns true.

The call-back object passed as a parameter will have its serviceConnected() method

called when the connection actually happen.

Parameters:

context - the context of the calling application. Cannot be null.

listener - a SEService.CallBack object. Can be null.

(b) Method: Reader[] getReaders()

Returns the list of available SE readers. There must be no duplicated objects in the

returned list. All available readers shall be listed even if no card is inserted.

Return value:

The readers list, as an array of readers. If there are no readers the returned array is of

length 0.

Errors:

NullPointerError – if context is NULL.

IllegalStateError - if the SEService object is not connected.

(c) Method: boolean isConnected()

Tells whether or not the service is connected.

Return value:

True if the service is connected.

(d) Method: void shutdown()

Releases all SE resources allocated by this SEService (including any binding to an

underlying service). As a result isConnected() will return false after shutdown() was called.

After this method call, the SEService object is not connected.

It is recommended to call this method in the termination method of the calling application

(or part of this application) which is bound to this SEService.

(e) Method: String getVersion()
Returns the version of the Open Mobile API Specification this implementation is based
on.

Return value:

String containing the Open Mobile API version (e.g. "3.0").

6.2.3 Class (or interface): SEService:CallBack

Interface to receive call-backs when the service is connected.

If the target language and environment allows it, then this shall be an inner interface of the

SEService class.

(a) Method: void serviceConnected(SEService service)

Called by the framework when the service is connected.

Parameters:

service - the connected service.

Securing the future of mobile services Open Mobile API Specification 14

Security, Identity, Mobility

6.2.4 Class: Reader

Instances of this class represent SE readers supported by this device. These readers can be

physical devices or virtual devices. They can be removable or not. They can contain one SE that

can or cannot be removed.

(a) Method: String getName()

Return the name of this reader.

 If this reader is a SIM reader, then its name must be "SIM[Slot]"

 If the reader is a SD or micro SD reader, then its name must be “SD[slot]”

 If the reader is an embedded SE reader, then its name must be “eSE[slot]”

Slot is a decimal number without leading zeros. The numbering must start with 1 (e.g.

SIM1, SIM2, … or SD1, SD2, … or eSE1, eSE2, …). The slot number “1” for a reader is

optional (SIM and SIM1 are both valid for the first SIM-reader, but if there are two readers

then the second reader must be named SIM2). This applies also for other SD or SE

readers.

Return value:

The reader name, as a String.

(b) Method: SEService getSEService()

Return the SE service this reader is bound to.

Return value:

The SEService object.

(c) Method: boolean isSecureElementPresent()

Check if a SE is present in this reader.

Return value:

True if the SE is present, false otherwise.

(d) Method: Session openSession()

Connects to a SE in this reader.

This method prepares (initialises) the SE for communication before the session object is

returned (i.e. powers the SE by ICC ON if it is not already on).

There might be multiple sessions opened at the same time on the same reader. The

system ensures the interleaving of APDUs between the respective sessions.

Return value:

A Session object to be used to create channels.

Errors:

IOError - if something went wrong when communicating with the SE or the reader.

(e) Method: void closeSessions()

Close all the sessions opened on this reader. All the channels opened by all these

sessions will be closed.

6.2.5 Class: Session

Instances of this class represent a connection session to one of the SEs available on the device.

These objects can be used to get a communication channel with an applet in the SE. This channel

can be the basic channel or a logical channel.

(a) Method: Reader getReader()

Get the reader that provides this session.

Return value:

The reader object.

Securing the future of mobile services Open Mobile API Specification 15

Security, Identity, Mobility

(b) Method: byte[] getATR()

Get the ATR of this SE.

The returned byte array can be null if the ATR for this SE is not available.

Return value:

The ATR as a byte array or null.

(c) Method: void close()

Close the connection with the SE. This will close any channels opened by this application

with this SE.

(d) Method: boolean isClosed()

Tells if this session is closed.

Return value:

True if the session is closed, false otherwise.

(e) Method: void closeChannels()

Close any channel opened on this session.

(f) Method: Channel openBasicChannel(byte[] aid, Byte P2)

Get access to the basic channel, as defined in the ISO/IEC 7816-4 specification (the one

that has number 0). The obtained object is an instance of the channel class.

If the AID is null, it means no applet is to be selected on this channel and the default applet

is used. If the AID is defined then the corresponding applet is selected.

Once this channel has been opened by a device application, it is considered as ’locked’

by this device application, and other calls to this method will return null, until the channel

is closed. Some SEs (like the UICC) might always keep the basic channel locked (i.e.

return null to applications), to prevent access to the basic channel, while some others

might return a channel object implementing some kind of filtering on the commands,

restricting the set of accepted command to a smaller set.

It is recommended for the UICC to reject the opening of the basic channel to a specific

applet, by always answering null to such a request.

For other SEs, the recommendation is to accept opening the basic channel on the default

applet until another applet is selected on the basic channel. As there is no other way than

a reset to select again the default applet, the implementation of the transport API should

guarantee that the openBasicChannel(null) command will return null until a reset occurs.

With the previous release (V2.05), it was not possible to set P2 value, this value was

always set to ‘00’. Except for specific needs it is recommended to keep P2 set to ‘00’. It is

recommended that the device allows all values for P2, however only the following values

are mandatory: ‘00’, ‘04’, ‘08’, ‘0C’ (as defined in [2]).

The implementation of the underlying SELECT command within this method shall be

based on ISO 7816-4 with following options:

CLA = ‘00’

INS = ‘A4’

P1=’04’ (Select by DF name/application identifier)

The select response data can be retrieved with byte[] getSelectResponse().

The API shall handle received status word as follows. If the status word indicates that the

SE was able to open a channel (e.g. status word ‘90 00’ or status words referencing a

warning in ISO-7816-4: ’62 XX” or “63 XX’) the API shall keep the channel opened and

the next getSelectResponse() shall return the received status word.

Securing the future of mobile services Open Mobile API Specification 16

Security, Identity, Mobility

Other received status codes indicating that the SE was not able to open a channel shall

be considered as an error and the corresponding channel shall not be opened.

The function without P2 as parameter is provided for backwards compatibility and will fall

back to a select command with P2=’00’.

Parameters:

aid - the AID of the applet to be selected on this channel, as a byte array, or null if no

applet is to be selected.

P2 - the P2 parameter of the SELECT APDU executed on this channel.

Return value:

An instance of channel if available or null.

Errors:

IllegalParameterError - if the aid's length is not within 5 to 16 (inclusive).

IllegalStateError - if the SE session is used after being closed.

SecurityError - if the calling application cannot be granted access to this AID or the default

applet on this session.

NoSuchElementError – If the AID on the SE is not available or cannot be selected.

OperationNotSupportedError – if the given P2 parameter is not supported by the device.

IOError - if there is a communication problem to the reader or the SE.

(g) Method: Channel openBasicChannel(byte[] aid)

This method is provided to ease the development of mobile application and for compliancy

with existing applications. This method is equivalent to openBasicChannel(aid, P2=0x00).

(h) Method: Channel openLogicalChannel(byte[] aid, Byte P2)

Open a logical channel with the SE, selecting the applet represented by the given AID. If

the AID is null, which means no applet is to be selected on this channel, the default applet

is used. It's up to the SE to choose which logical channel will be used.

With the previous release (V2.05) it was not possible to set P2 value, this value was

always set to ‘00’. Except for specific needs it is recommended to keep P2 set to ‘00’. It is

recommended that the device allows all values for P2, however only the following values

are mandatory: ‘00’, ‘04’, ‘08’, ‘0C’ (as defined in [2]).

The implementation of the underlying SELECT command within this method shall be

based on ISO 7816-4 with the following options:

CLA = ‘01’ to ‘03’, ‘40 to 4F’

INS = ‘A4’

P1=’04’ (Select by DF name/application identifier)

The select response data can be retrieved with byte[] getSelectResponse().

The API shall handle received status word as follows. If the status word indicates that the

SE was able to open a channel (e.g. status word ‘90 00’ or status words referencing a

warning in ISO-7816-4: ’62 XX” or “63 XX’) the API shall keep the channel opened and

the next getSelectResponse() shall return the received status word.

Other received status codes indicating that the SE was not able to open a channel shall

be considered as an error and the corresponding channel shall not be opened.

In the case of a UICC it is recommended that the API rejects the opening of the logical

channel without a specific AID, by always answering null to such a request.

Securing the future of mobile services Open Mobile API Specification 17

Security, Identity, Mobility

The function without P2 as parameter is provided for backwards compatibility and will fall

back to a select command with P2=00.

Parameters:

aid - the AID of the applet to be selected on this channel, as a byte array.

P2 - the P2 parameter of the SELECT APDU executed on this channel.

Return value:

An instance of channel. Null if the SE is unable to provide a new logical channel even if

this channel would first be used by the implementation to retrieve the Access Control rules

according to the GlobalPlatform Secure Element Access Control Specification.

Errors:

IllegalParameterError - if the aid's length is not within 5 to 16 (inclusive).

IllegalStateError - if the SE is used after being closed.

SecurityError - if the calling application cannot be granted access to this AID or the default

applet on this session.

Note, failure in retrieving rules due to the lack of a new logical channel (and only this

failure) should result in a Null return value and not a security exception. This is in line with

the GlobalPlatform Secure Element Access Control Specification, as the access to the SE

applet will be anyway denied.

NoSuchElementError – If the AID on the SE is not available or cannot be selected or a

logical channel is already open to a non-multiselectable applet.

OperationNotSupportedError – if the given P2 parameter is not supported by the device.

IOError - if there is a communication problem to the reader or the SE.

(i) Method: Channel openLogicalChannel(byte[] aid)

This method is provided to ease the development of mobile applications and for

compliancy with existing applications. This method is equivalent to

openLogicalChannel(aid, P2=0x00).

6.2.6 Class: Channel

Instances of this class represent an ISO/IEC 7816-4 channel opened to a SE. It can be either a

logical channel or the basic channel.

They can be used to send APDUs to the SE. Channels are opened by calling the

Session.openBasicChannel(byte[]) or Session.openLogicalChannel(byte[]) methods.

(a) Method: void close()

Closes this channel to the SE. If the method is called when the channel is already closed,

this method will be ignored.

The close() method shall wait for completion of any pending transmit(byte[] command)

before closing the channel.

(b) Method: boolean isBasicChannel()

Returns a boolean telling if this channel is the basic channel.

Return value:

True if this channel is a basic channel.

False if this channel is a logical channel.

(c) Method: boolean isClosed()

Tells if this channel is closed.

Return value:

True if the channel is closed, false otherwise.

(d) Method: byte[] getSelectResponse()

Securing the future of mobile services Open Mobile API Specification 18

Security, Identity, Mobility

Returns the data as received from the application select command inclusively the status

word received at applet selection.

The returned byte array contains the data bytes in the following order:

[<first data byte>, …, <last data byte>, <sw1>, <sw2>]

Return value:

 The data as returned by the application select command inclusive of the status word.

 Only the status word if the application select command has no returned data.

 Null if an application select command has not been performed or the selection response

cannot be retrieved by the reader implementation.

(e) Method: Session getSession()

Get the session that has opened this channel.

Return value:

The session object this channel is bound to.

(f) Method: byte[] transmit(byte[] command)

Transmit an APDU command (as per ISO/IEC 7816-4) to the SE. The underlying layers

generate as many TPDUs as necessary to transport this APDU. The API shall ensure that

all available data returned from the SE, including concatenated responses, are retrieved

and made available to the calling application. If a warning status code is received the API

won’t check for further response data but will return all data received so far and the

warning status code.

The transport part is invisible from the application. The generated response is the

response of the APDU which means that all protocol related responses are handled inside

the API or the underlying implementation.

The transmit method shall support extended length APDU commands independently of

the coding within the ATR.

For status word ’61 XX’ the API or underlying implementation shall issue a GET

RESPONSE command as specified by ISO 7816-4 standard with LE=XX; this includes

the scenario where the SE returns overall response data of more than 256 bytes to the

APDU. For the status word ‘6C XX’, the API or underlying implementation shall reissue

the input command with LE=XX. For other status words (including warning status words),

the API (or underlying implementation) shall return the complete response including all

response data and final status word to the device application. Note that the handling of

GET RESPONSE specified above implies that the API or underlying implementation shall

handle response data of more than 256 bytes which is returned by the SE.

The API (or underlying implementation) shall not handle the received status words

internally. The channel shall not be closed even if the SE answered with an error code.

The system ensures the synchronization between all the concurrent calls to this method,

and that only one APDU will be sent at a time, irrespective of the number of TPDUs that

might be required to transport it to the SE. The entire APDU communication to this SE is

locked to the APDU.

The channel information in the class byte in the APDU will be ignored. The system will

add any required information to ensure the APDU is transported on this channel.

The only restrictions on the set of commands that can be sent is defined below, the API

implementation shall be able to send all other commands:

 MANAGE_CHANNEL commands are not allowed.

 SELECT by DF Name (P1=04) are not allowed.

 CLA bytes with channel numbers are de-masked.

Securing the future of mobile services Open Mobile API Specification 19

Security, Identity, Mobility

Parameters:

command - the APDU command to be transmitted, as a byte array.

Return value:

The response received, as a byte array. The returned byte array contains the data bytes

in the following order: [<first data byte>, …, <last data byte>, <sw1>, <sw2>]

Errors:

NullPointerError – if command is NULL.

IllegalParameterError – if:

 the command byte array is less than 4 bytes long, or

 Lc byte is inconsistent with the length of the byte array, or

 CLA byte is invalid according to [2] (0xff), or

 INS byte is invalid according to [2] (0x6x or 0x9x).

IllegalStateError - if the channel is used after being closed.

SecurityError - if the command is filtered by the security policy.

IOError - if there is a communication problem to the reader or the SE.

(g) Method: boolean selectNext()

Performs a selection of the next Applet on this channel that matches to the partial AID

specified in the openBasicChannel(byte[] aid) or openLogicalChannel(byte[] aid) method.

This mechanism can be used by a device application to iterate through all applets

matching to the same partial AID.

If selectNext() returns true, a new applet was successfully selected on this channel. If no

further applet exists with matches to the partial AID, this method returns false and the

already selected applet stays selected.

Since the API cannot distinguish between a partial and full AID, the API shall rely on the

response of the SE for the return value of this method.

The implementation of the underlying SELECT command within this method shall use the

same values as the corresponding openBasicChannel(byte[] aid) or

openLogicalChannel(byte[] aid) command with the option:

P2=’02’ (Next occurrence)

The select response stored in the channel object, shall be updated with the APDU

response of the SELECT command.

Return value:

True if a new applet was selected on this channel.

False if the already selected applet stays selected on this channel.

Errors:

IllegalStateError - if the SE is used after being closed.

OperationNotSupportedError - if this operation is not supported by the card.

IOError - if there is a communication problem to the reader or the SE.

6.3 Procedural interface
This interface is based on the object interface but adapted for platforms where concepts like

objects or exceptions are not available.

Securing the future of mobile services Open Mobile API Specification 20

Security, Identity, Mobility

The overall design of the Object interface is kept with the separation of readers, sessions and

channels. However, for the ease of the interface, the concept of an underlying service

(represented by SEService) is removed. All exceptions and error conditions are mapped into

result codes.

The behaviour of the functions defined in the procedural interface is the same as their

counterparts in the object interface.

Figure 6-3: Transport API procedure diagram

6.3.1 Usage pattern

When data is to be returned from the procedural interface through a parameter, e.g. the ATR of

a session or the select response, the client has to allocate the proper amount of memory.

For such, the client can either

Securing the future of mobile services Open Mobile API Specification 21

Security, Identity, Mobility

- pre-allocate enough memory and specify the amount of allocated memory in the

function call or,

- call the function twice. First call would be with null as parameter to determine the

proper amount of memory required and allocated and referenced in the second

call.

The omapi_channel_transmit() function works differently as the memory has either to be pre-

allocated before the function call or omapi_channel_transmit_receive_response() has to be called

to retrieve the actual response APDU. Every call to omapi_channel_transmit() will transmit the

supplied APDU.

The client always has to allocate all memory required for the response data of the method call.

The methods

- omapi_get_readers() and

- omapi_channel_transmit()

can return part of the response data, e.g. only the first two entries or bytes, and cut off the rest.

The other methods like

- omapi_get_version(),

- omapi_reader_get_name(),

- omapi_session_get_atr(),

- omapi_channel_get_select_response()

can only return all data or nothing.

6.3.2 SEService mapping

(a) OMAPI RESULT omapi_get_version(String pVersion, Int *pLength)

pVersion has to be a properly allocated string or null if the function should return the proper string

length in pLength.

Parameters

[out] String *pVersion - allocated string buffer that contains the version string or null to determine

the proper length in pLength.

[in|out] Int *pLength - size of version string length.

Return

Success - all went ok.

IllegalParameterError - pLength is too short for the version string to be returned.

GeneralError - general error not further specified.

(b) OMAPI RESULT omapi_get_readers(Handle *phReaders, Int *pLength)

phReaders must be properly allocated or null where the function returns the proper amount of

handles in pLength.

When pLength is smaller than the available reader list, only pLength handles are returned in

phReaders. If pLength is bigger than the available reader list, only the available reader list is

returned in phReaders and pLength contains the proper amount of handles in phReaders.

Parameters

Securing the future of mobile services Open Mobile API Specification 22

Security, Identity, Mobility

[out] Handle *phReaders - allocated list of handles or null to determine the array length.

[in|out] Int *pLength - amount of handles that are allocated/returned in phReaders.

Return

Success - all went ok.

GeneralError - general error not further specified.

6.3.3 Reader mapping

(a) OMAPI RESULT omapi_reader_get_name(Handle hReader, String pReader, Int

*pLength)

pReader must be properly allocated or null where the function returns the proper amount of

memory to be allocated in pLength.

Depending on the software platform, pLength might include a \0 after the actual reader name if

the platform representation of strings are zero-terminated.

Parameters

[in] Handle hReader - handle to the reader.

[out] String *pReader - allocated string to retrieve the name of the reader or null to determine the

string length.

[in|out] Int *pLength - size of allocated/returned string.

Return

Success - all went ok.

NullPointerError – pLength is null IllegalParameterError - hReader not a valid reader handle or

pLength < actual length of the reader name.

GeneralError - general error not further specified.

(b) OMAPI RESULT omapi_reader_is_secure_element_present(Handle hReader,

Boolean *pIsPresent)

Parameters

[in] Handle hReader - handle to the reader.

[out] Boolean *pIsPresent - true or false depending on whether a SE is present in the reader -

undefined when an error is returned.

Return

Success - all went ok.

IllegalParameterError - hReader not a valid reader handle.

GeneralError - general error not further specified.

(c) OMAPI RESULT omapi_reader_open_session(Handle hReader, Handle

*phSession)

Securing the future of mobile services Open Mobile API Specification 23

Security, Identity, Mobility

Parameters

[in] Handle hReader - handle to the reader.

[out] Handle *phSession - handle to the session created for this reader.

Return

Success - all went ok.

NullPointerError – phSession is null IOError - something went wrong in the communication with

the SE.

IllegalParameterError - hReader not a valid reader handle.

GeneralError - general error not further specified.

(d) OMAPI RESULT omapi_reader_close_sessions(Handle hReader)

Parameters

[in] Handle hReader - handle to the reader.

Return

Success - all went ok.

IOError - something went wrong in the communication with the SE.

IllegalParameterError - hReader not a valid reader handle.

GeneralError - general error not further specified.

6.3.4 Session mapping

(a) OMAPI RESULT omapi_session_get_reader(Handle hSession, Handle

*phReader)

Parameters

[in] Handle hSession - handle to the session.

[out] Handle *phReader - reader handle that provides this session.

Return

Success - all went ok.

NullPointerError – phReader is null.

IllegalParameterError - hSession not a valid session handle.

GeneralError - general error not further specified.

(b) OMAPI RESULT omapi_session_get_atr(Handle hSession, Byte *pAtr, Int

*pLength)

pAtr must be properly allocated or null where the function returns the proper amount of memory

to be allocated for pAtr in pLength. If the ATR for this SE is not available the returned length is

set to zero and return value is “Success”.

Parameters

[in] Handle hSession - handle to the session.

[out] Byte *pAtr - allocated byte array to retrieve the ATR or null to determine the array length in

pLength.

Securing the future of mobile services Open Mobile API Specification 24

Security, Identity, Mobility

[in|out] Int *pLength - size of byte array allocated/returned in pAtr.

Return

Success - all went ok.

NullPointerError – pLength is null.

IllegalParameterError - hSession not a valid session handle or pLength < actual length of ATR.

GeneralError - general error not further specified.

(c) OMAPI RESULT omapi_session_close(Handle hSession)

Parameters

[in] Handle hSession - handle to the session.

Return

Success - all went ok.

IOError - communication error with the SE while closing a channel.

IllegalParameterError - hSession not a valid session handle.

GeneralError - general error not further specified.

(d) OMAPI RESULT omapi_session_is_closed(Handle hSession, Boolean

*pIsClosed)

Parameters

[in] Handle hSession - handle to the session.

[out] Boolean *pIsClosed - true or false depending on the session state.

Return

Success - all went ok.

NullPointerError – pIsClosed is null.

IllegalParameterError - hSession not a valid session reference.

GeneralError - general error not further specified.

(e) OMAPI RESULT omapi_session_close_channels(Handle hSession)

Parameters

[in] Handle hSession - handle to the session.

Return

Success - all went ok.

IOError - communication error with the SE while closing a channel.

IllegalParameterError - hSession not a valid session handle.

GeneralError - general error not further specified.

(f) OMAPI RESULT omapi_session_open_basic_channel(Handle hSession, Byte

*AID, Int length, Byte P2, Handle *phChannel)

Securing the future of mobile services Open Mobile API Specification 25

Security, Identity, Mobility

Parameters

[in] Handle hSession - handle to the session.

[in] Byte *AID - byte array containing the AID to be selected on this channel.

[in] Int length - size of byte array or 0 when no SELECT should be executed.

[in] Byte P2 - P2 byte of the SELECT command if executed. It is recommended that the device

allows all values for P2, however only the following values are mandatory: ‘00’, ‘04’, ‘08’, ‘0C’

(definitions of these values are in [2]).

[out] Handle *phChannel - channel handle of the basic channel.

Return

Success - all went ok.

NullPointerError – phChannel is null.

SecurityError - channel not allowed by access control.

IOError - communication error with the SE.

NoSuchElementError - AID cannot be selected.

IllegalParameterError - hSession not a valid session handle.

ChannelNotAvailableError – if basic channel is blocked or busy.

GeneralError - general error not further specified.

(g) OMAPI RESULT omapi_session_open_logical_channel(Handle hSession, Byte

*AID, Int length, Byte P2, Handle *phChannel)

In the case of a UICC it is recommended that the API rejects the opening of the logical channel

without a specific AID, by always returning ChannelNotAvailableError to such a request.

Parameters

[in] Handle hSession - handle to the session.

[in] Byte *AID - byte array containing the AID to be selected on this channel.

[in] Int length - size of byte array or 0 when no SELECT should be executed.

[in] Byte P2 - P2 byte of the SELECT command if executed.

[out] Handle *phChannel - channel handle of the new logical channel.

Return

Success - all went ok.

NullPointerError – phChannel is null.

SecurityError - channel not allowed by access control.

IOError - communication error with the SE.

NoSuchElementError - AID cannot be selected.

IllegalParameterError - hSession not a valid session handle.

ChannelNotAvailableError – if there are no more logical channels available.

GeneralError - general error not further specified.

6.3.5 Channel mapping

(a) OMAPI RESULT omapi_channel_close(Handle hChannel)

Parameters

[in] Handle hChannel - handle to the channel.

Securing the future of mobile services Open Mobile API Specification 26

Security, Identity, Mobility

Return

Success - all went ok.

IOError - communication error with the SE while closing the channel.

IllegalParameterError - hChannel not a valid channel handle.

GeneralError - general error not further specified.

(b) OMAPI RESULT omapi_channel_is_basic_channel(Handle hChannel, Boolean

*pIsBasicChannel)

Parameters

[in] Handle hChannel - handle to the channel.

[out] Boolean *pIsBasicChannel - true or false depending on the channel type.

Return

Success - all went ok.

NullPointerError – pIsBasicChannel is null.

IllegalParameterError - hChannel not a valid channel handle.

GeneralError - general error not further specified.

(c) OMAPI RESULT omapi_channel_is_closed(Handle hChannel, Boolean

*pIsClosed)

Parameters

[in] Handle hChannel - handle to the channel.

[out] Boolean *pIsClosed - false if the channel is open, true in all other cases.

Return

Success - all went ok.

NullPointerError – pIsClosed is null.

GeneralError - general error not further specified.

(d) OMAPI RESULT omapi_channel_get_select_response(Handle hChannel, Byte

*pSelectResponse, Int *pLength)

pSelectResponse must be properly allocated or null where the function returns the proper amount

of memory to be allocated for pSelectResponse in pLength.

Parameters

[in] Handle hChannel - handle to the channel.

[out] Byte *pSelectResponse - allocated byte array to retrieve the SELECT response or null to

determine the array length.

[in|out] Int *pLength - size of byte array allocated/returned in pSelectResponse.

Return

Success - all went ok.

NullPointerError – pLength is null.

IllegalParameterError - hChannel not a valid channel handle or pLength < actual length of the

SELECT response.

Securing the future of mobile services Open Mobile API Specification 27

Security, Identity, Mobility

GeneralError - general error not further specified.

(e) OMAPI RESULT omapi_channel_get_session(Handle hChannel, Handle

*phSession)

Parameters

[in] Handle hChannel - handle to the channel.

[out] Handle *phSession - session handle of this channel.

Return

Success - all went ok.

NullPointerError – phSession is null.

IllegalParameterError - hChannel not a valid channel handle.

GeneralError - general error not further specified.

(f) OMAPI RESULT omapi_channel_transmit(Handle hChannel, Byte *pCommand,

Int cmdLength, Byte *pResponse, Int *pRspLength)

Transmits an APDU defined in pCommand to the SE. The response APDU is always cached

internally and can be retrieved with omapi_channel_transmit_receive_response() until the data is

overwritten after the next omapi_channel_transmit() call.

When memory is allocated in pResponse for the response APDU, the response is directly

returned and a following call to omapi_channel_transmit_receive_response() is not required. The

length of the response APDU (data plus the status word) is returned in pRspLength.

When pRspLength is smaller than the actual response APDU, only first pRspLength bytes are

returned in pResponse. If pRspLength is bigger than the actual response APDU, only the actual

response data plus its status word is returned in pResponse and pRspLength contains the proper

amount of bytes in pResponse.

Parameters

[in] Handle hChannel - handle to the channel.

[in] Byte *pCommand - command APDU to be send to the SE.

[in] Int cmdLength - size of command APDU.

[out] Byte *pResponse - allocated byte array for the response APDU (data plus status word) or

null if only the response length should be returned.

[in|out] Int *pRspLength - size of response APDU (data plus status word) to be retrieved with

omapi_channel_transmit_receive_response() or contained in

pResponse.

Return

Success - all went ok.

NullPointerError – if pCommand is null.

SecurityError - command not allowed by access control.

IOError - communication error with the SE.

IllegalStateError - channel is already closed to this SE.

IllegalParameterError – if:

 hChannel not a valid channel handle, or

 cmdLength < 4, or

 Lc byte is inconsistent with cmdLength, or

 CLA byte is invalid according to [2] (0xff), or

Securing the future of mobile services Open Mobile API Specification 28

Security, Identity, Mobility

 INS byte is invalid according to [2] (0x6x or 0x9x).

GeneralError - general error not further specified.

(g) OMAPI RESULT omapi_channel_transmit_retrieve_response(Handle

hChannel, Byte *pResponse, Int *pRspLength)

Helper function to retrieve the response APDU of the previous transmit() call. Subsequent

transmit() calls overwrite the response APDU. pResponse should be allocated with the amount of

bytes returned by the transmit() call.

When pRspLength is smaller than the actual response APDU, only pRspLength bytes are

returned in pResponse. If pRspLength is bigger than the actual response APDU, only the actual

response data plus its status word is returned in pResponse and pRspLength contains the proper

amount of bytes in pResponse.

Parameters

[in] Handle hChannel - handle to the channel.

[out] Byte *pResponse - allocated byte array for the response APDU (data plus status word).

[in|out] Int *pRspLength - size of byte array allocated/returned in pResponse.

Return

Success - all went ok.

IllegalStateError - no APDU response available on this channel, e.g. no transmit executed

previously.

IllegalParameterError - hChannel not a valid channel handle.

GeneralError - general error not further specified.

(h) OMAPI RESULT omapi_channel_select_next(Handle hChannel, Boolean

*pSuccess)

Parameters

[in] Handle hChannel - handle to the channel.

[out] Boolean *pSuccess - True if a new applet was selected on this channel.

False if the already selected applet stays selected on this channel.

Return

Success - all went ok.

IOError - communication error with the SE.

IllegalStateError - channel is already closed to this SE.

IllegalParameterError - hChannel not a valid channel handle.

OperationNotSupportedError - SE does not support the select next command.

GeneralError - general error not further specified.

7. Service Layer APIs

The Service APIs as part of the Open Mobile API provides a framework to access SEs available in the

mobile device with high level interfaces.

Securing the future of mobile services Open Mobile API Specification 29

Security, Identity, Mobility

7.1 Overview
The Open Mobile API contains a Service API on top of the Transport API for providing high level

API methods for different purposes. The Service API relies on the Transport API to establish

communication with the Applets within the SE. The Service API consists of different APIs

specialised for different purposes (e.g. File Management API for file operations). Normally each

specialised API requires a counterpart on the SE side (e.g. an SE applet providing a defined set

of APDUs).

Figure 7-1: Service API overview

Note:

The use of the Service Layer API requires SE access rights (see chapter 10 for more information

on SE access rights).

Since all operations within the Service API layer are based on the Transport API, all error

conditions of the corresponding transport classes can be thrown in the service layer although they

are not explicitly named. E.g. a call to AuthenticationProvider::verifyPin() can cause an IOError

because the implementation uses the Channel::transmit() API call internally.

Secure Element (SE)

Applet or OS with ISO/

IEC7816-4 file system

Mobile Device

Open Mobile API

Transport API

Service API

File Service

Applet or OS with ISO/

IEC7816-4 PIN commands

Authentication Service

Applet or OS with PKCS#15

structures

PKCS#15 Service

Secure Storage Applet

Secure Storage Service ...

Securing the future of mobile services Open Mobile API Specification 30

Security, Identity, Mobility

7.2 Class diagram
This class diagram contains the Service API besides the Transport API. The Service API consists

of a set of classes derived from the base class Provider. The Crypto API is not part of this diagram,

but it is also a component of the Service API. The Crypto API relies on already existing APIs in

the OS and realises SE communication via the Transport API.

Figure 7-2: Service API class diagram with Provider classes

Besides these Provider classes, the Service API contains a SEDiscovery class which provides a

discovery mechanism that can be used for SE selection by defined criteria.

 org.simalliance.openmobileapi

Provider

Provider(Channel channel)

Channel getChannel()

FileViewProvider

FileViewProvider(Channel channel)

byte[] readBinary(int sfi, int offset, int length)

Record readRecord(int sfi, int recID)

int[] searchRecord(int sfi, byte[] searchPattern)

FCP selectByFID(int fileID)

FCP selectByPath(String path, boolean fromCurrentDF)

FCP selectParent()

void writeRecord(int sfi, Record rec)

void writeBinary(int sfi, byte[] data, int offset, int length)

AuthenticationProvider

AuthenticationProvider(Channel)

void activatePin(PinID pinID, byte[] pin)

void changePin(PinID pinID, byte[] oldPin, byte[] newPin)

void deactivatePin(PinID pinID, byte[] pin)

int getRetryCounter(PinID pinID)

void resetPin(PinID pinID, byte[] resetPin, byte[] newPin)

boolean verifyPin(PinID pinID, byte[] pin)

SecureStorageProvider

SecureStorageProvider(Channel channel)

void create(String title, byte[] data)

void update(String title, byte[] data)

byte[] read(String title)

boolean exist(String title)

boolean delete(String title)

void deleteAll()

String[] list()

SEService

SEService(Context, Callback)

boolean isServiceConnected()

Reader[] getReaders()

void shutdown()

Session

Reader getReader()

Channel openBasicChannel(byte[] aid)

Channel openLogicalChannel(byte[] aid)

void close()

boolean isClosed()

byte[] getATR()

void closeChannels()

Channel

void close()

boolean isBasicChannel()

byte[] transmit(byte[] command)

Session getSession()

boolean isClosed()

byte[] getSelectResponse()

Reader

String getName()

Session openSession()

void closeSessions()

boolean isSecureElementPresent()

SEService getSEService()

*

*

Callback

serviceConnected(SEService)

*

PinID

PinID(int id, boolean local)

int getID()

boolean isLocal()

FCP

byte[] getFCP()

int getFID()

int getFileSize()

int getFileStructure()

int getFileType()

int getLCS()

int getMaxRecordSize()

int getNumberOfRecords()

int getSFI()

int getTotalFileSize()

Record

Record(int id, byte[] data)

byte[] getData()

int getID()

PKCS15Provider

PKCS15Provider(Channel channel)

Path decodePath(byte[] der)

Path[] getAuthObjPaths()

Path[] getCertificatePaths()

Path[] getDataObjPaths()

byte[] getODF()

Path[] getPrivateKeyPaths()

Path[] getPublicKeyPaths()

byte[] getTokenInfo()

byte[] readFile(Path path)

byte[] searchOID(byte[] dodf, String oid)

Path

Path(byte[] path)

Path(byte[] path, int index, int length)

byte[] encode()

int getIndex()

int getLength()

byte[] getPath()

boolean hasIndexLength()

Securing the future of mobile services Open Mobile API Specification 31

Security, Identity, Mobility

Figure 7-3: Service API class diagram with SEDiscovery classes

7.3 Usage pattern
The usage pattern of the service API is as follows:

1. The application gets access to the SE service(s):

It creates a SEService class, passing an object implementing the SEService.Callback

interface, whose serviceConnected method is called asynchronously when the connection is

established. This does not represent a connection with the SE itself, but with the subsystem

implementing the SE access functionality.

2. The application enumerates the available readers.

Readers are the slots where SEs are connected (in a removable or non-removable manner).

Once the user or an application-specific algorithm has selected a reader, then the application

opens a session on this reader. The right reader can also be chosen by using the Discovery

API. The Discovery API allows different criteria to be defined (ATR, AID, …) for finding an

appropriate SE and applet in an SE. Finally, the Discovery API allows iterating through the

readers containing an SE with the defined criteria.

3. With this session, the application can retrieve the ATR of the SE, and if it matches with one of

the known ATRs, it can start opening channels with applets in the SE.

 org.simalliance.openmobileapi

SEService

SEService(Context, Callback)

boolean isServiceConnected()

Reader[] getReaders()

void shutdown()

Session

Reader getReader()

Channel openBasicChannel(byte[] aid)

Channel openLogicalChannel(byte[] aid)

void close()

boolean isClosed()

byte[] getATR()

void closeChannels()

Channel

void close()

boolean isBasicChannel()

byte[] transmit(byte[] command)

Session getSession()

boolean isClosed()

byte[] getSelectResponse()

Reader

String getName()

Session openSession()

void closeSessions()

boolean isSecureElementPresent()

SEService getSEService()

*

*

Callback

serviceConnected(SEService)

*

SEDiscovery

SEDiscovery(SEService service, SERecognizer rec)

Reader getFirstMatch()

Reader getNextMatch()

SERecognizer

boolean isMatching(Session session)

SERecognizerByHistoricalBytes

SERecognizerByHistoricalBytes(byte[] values)

boolean isMatching(Session session)

SERecognizerByATR

SERecognizerByATR(byte[] atr, byte[] mask)

boolean isMatching(Session session)

SERecognizerByAID

SERecognizerByAID(byte[] aid)

boolean isMatching(Session session)

Securing the future of mobile services Open Mobile API Specification 32

Security, Identity, Mobility

4. To open a channel, the application will use the AID of the applet or use the default applet on

the newly opened channel. The application is in charge of selecting an applet which fits to the

specific Provider class that will be chosen in the next step for SE operations.

5. The application creates an instance of a certain Provider class depending on the application’s

intention. If the intention is to read files from the SE’s file system the FileViewProvider has to

be chosen. The application has to consign the communication channel (established in the step

before) to the Provider before the Provider instance can be used for SE operations.

6. Then the terminal application can start performing operations on the selected applet in the SE

with the help of the provider’s methods. If a FileViewProvider instance was created for reading

files from the SE’s file system, the application can use the FileViewProvider’s methods

readBinary() or readRecord().

7. The terminal application can also use several Provider instances alternately on the same

channel or it can use the transmit method of the Transport Layer to send any APDUs directly

to the SE on that channel. This option is especially useful if the application needs to perform

different operations on the same channel. This could happen for example if the application

needs to read a file from the SE’s file system that requires a successful PIN verification on the

same channel as before. In this case, the terminal application can instantiate an Authentication

class which provides the verifyPin() method. After the successful PIN verification via the

AuthenticationProvider the FileViewProvider can be used to read the file from the SE’s file

system. Since the SE usually manages the PIN verification individually for each logical channel

it is important to apply the AuthenticationProvider and FileViewProvider on the same channel.

8. Once done, the application can close any existing channels or even sessions, and its

connection to the SEService.

7.4 Service API Framework
The Open Mobile API provides a set of service layer classes with high level methods for SE

operations.

7.4.1 Class: Provider

This Provider class (realised as interface or abstract class) is the base class for all service

layer classes. Each service layer class provides a set of methods for a certain aspect (file

management, PIN authentication, PKCS#15 structure handling etc) and acts as a provider

for service routines. All Provider classes need an open channel for communication with

the SE. As such, before a certain Provider class can be used for SE operations, the

channel has to be consigned. For performing different operations (PIN authentication, file

operation etc) the Provider classes can be easily combined by using the same channel

for different Provider classes and alternately calling methods of these different providers.

It has to be considered that each Provider class needs a counterpart on the SE side (e.g.

an applet with a standardised APDU interface as required by the Provider class). The

application using a Provider class for SE interactions is in charge of assigning a channel

to the Provider where the Provider’s SE counterpart applet is already preselected.

Securing the future of mobile services Open Mobile API Specification 33

Security, Identity, Mobility

(a) Constructor: Provider(Channel channel)

Encapsulates the defined channel by a Provider object that can be used for performing

a service operation on it. This constructor has to be called by derived Provider classes

during the instantiation.

Parameters:

channel - the channel that shall be used by this Provider for service operations.

Errors:

IllegalStateError - if the defined channel is closed.

(b) Method: Channel getChannel()

Returns the channel that is used by this provider.

This returned channel can also be used by other providers.

Return value:

The channel instance that is used by this provider.

7.5 Crypto API
The crypto API that is native to the mobile operating system shall be used.

For SE vendors, it guarantees that the crypto functionality offered by the SEs will be seen at the

same level as others.

For application developers, they have to be careful to choose the crypto functionality provided by

the SE when enumerating the available crypto providers.

For example, in a Java environment, it is recommended to use the Java Crypto Extension as the

Java binding of the crypto API. More information on the JCE can be found in [7].

[7] serves two purposes:

 It contains information about the API side of the Java Cryptography Architecture, that may be

used by developers to learn how to use this API.

 It contains information about the SPI (Service Provider Interface) side of the Java Cryptography

Architecture, i.e. how to add new cryptography capabilities to a Java platform, by implementing

a Provider, and how to declare and use the new providers.

In a native environment, where C/C++ is used as the programming language, it is recommended

to use PKCS#11 as the native binding of the crypto API. More information on PKCS#11 can be

found in [5].

In a mixed environment where Java and C/C++ are cohabiting, the PKCS#11 implementations

should be made available to the Java applications. This is typically done by defining a JCE

Provider for PKCS#11, that behaves as a Java binding for PKCS#11.

Securing the future of mobile services Open Mobile API Specification 34

Security, Identity, Mobility

The following is an example of such a mixed architecture.

Figure 7-4 Crypto API architecture

7.5.1 Extensibility

A requirement of this API is to provide the functionality to add system wide crypto

providers during runtime (without flashing the device) to support the different card

implementations in the field.

For example, in a Java environment, the JCE provider architecture should be used to

declare new providers (by SE vendors) and to lookup for JCE providers (by application

developers).

In a native environment, a mechanism to declare new PKCS#11 implementation (typically

as shared libraries) must be available (to be used by PKCS#11 implementers), and

reciprocally a mechanism to choose between the available PKCS#11 libraries must be

available (to be used by application developers).

7.5.2 Extending by Shared Libraries

On systems that support the use of shared libraries, this mechanism can be used to

provide new implementations of crypto providers. For example, PKCS#11

implementations can be provided as shared libraries. The mechanism to register and

discover these shared libraries is yet to be defined (it is not part of PKCS#11).

Native

Application

Java

Application

Java

Application

SE1 SE3SE2

Transport API

P11 for

SE2

P11 for

SE1

Java JCE interface

Generic P11

JCE

Provider

SE3

JCE

Provider

Native Code

Java Code

System provided

code

Secure

Element

Securing the future of mobile services Open Mobile API Specification 35

Security, Identity, Mobility

7.5.3 Extending by Applicative plugins

On systems where extensibility can only be achieved by installing new applications, and

which provide a way to perform inter-application communication (e.g. IPC), a plugin

mechanism can be used.

A generic provider based on the IPC capabilities can be offered by the system, to be used

by the applications. The role of this generic provider is to lookup for plugin applications

implementing a specific crypto service interface, list them to the crypto-aware

applications, (enumerated as regular crypto providers) and when a crypto-aware

application selects a particular provider, establish the connection to the plugin application

actually implementing the crypto operations and forward all the requests thanks to the IPC

mechanism.

The following is an illustration of such an implementation on a Java-based environment,

using a JCE provider (the same could apply to a native-based environment, using a

PKCS#11 library):

Figure 7-5: Crypto API architecture with plugin Applications

With this architecture, when support for a new type of SE providing crypto services has to

be added to the system, it is just a matter of installing a new plugin application

implementing the protocol to interact properly with this new type of crypto provider.

Java

Application

Java

Application

SE1 SE3SE2

Transport API

Java JCE interface

Generic IPC

JCE

Provider

SE3

JCE

Provider

IP
C

IP
C

Java Code

System provided

code

Secure Element

SE1 Plugin

Application

SE1 Plugin

Application

Application

implementing the crypto

plugin interface

Securing the future of mobile services Open Mobile API Specification 36

Security, Identity, Mobility

7.5.4 Integration with the Transport API

The Crypto API(s) should be implemented on top of the Transport API; if it is not, the

system should behave as if it was. For example, if the Crypto API requires access to the

basic channel of a SE, then it is subject to the same rules as the other applications: access

to the basic channel is provided only if the application calling the Crypto API is authorised

to access the basic channel, and if it is currently not locked. In the same way, if the basic

channel is locked by the Crypto API, it is not available to other applications.

If the PKCS#11 libraries are implemented on top of a PC/SC layer or an equivalent layer

that gives a reader-access level, then it is recommended that APDUs sent over this layer

are filtered and processed to be translated into commands for the Transport API.

For example, if a native application sends a MANAGE_CHANNEL command and then a

SELECT_BY_DF_NAME command, this should be translated into a call to

openLogicalChannel.

7.6 Discovery API
This API provides means for the applications to lookup for a SE, based on a search criterion. The

rationale behind such an API is to factorise this lookup code in a system-provided API, reducing

the development cost of this part of each application.

This API relies on an object-oriented approach: the lookup method is shared, but the criterion is

implemented as a separate class that can be derived. A set of basic criterion class is provided,

they include:

 Search by ATR.

 Search by Historical bytes.

 Search by AID.

If these basic research criteria are not sufficient to fulfil a specific application’s needs, then the

application can provide its own criterion object. This object will have its isMatching() method called

for each SE present in the system, and will be able to use the Transport API (or any other Service

API) to implement a specific matching algorithm. Examples of such specific algorithm are:

 Analysis of EFdir file (if available).

 Analysis of GlobalPlatform Status information (if available).

Figure 7-6: Discovery mechanism

7.6.1 Class: SEDiscovery

Instances of this class must be created by the applications to start a discovery process.

d = SEDiscovery(<SE matching criteria>)

Reader = d.getFirstMatch()

Reader = d.getNextMatch()

Securing the future of mobile services Open Mobile API Specification 37

Security, Identity, Mobility

When created, they are configured with a SEService and an object that will perform the

recognition algorithm.

(a) Constructor: SEDiscovery (SEService service, SERecognizer

recognizer)

Creates a discovery object that will perform a discovery algorithm specified by the

recognizer object, and will be applied to the given SEService.

Parameters:

service - the SEService used to perform the discovery. Cannot be null.

recognizer - an SERecognizer instance, whose isMatching will be called. Cannot be

null.

Errors:

IllegalParameterError – if one of the parameters is null.

(b) Method: Reader getFirstMatch()

Returns the first SE reader containing a SE that matches the search criterion.

Actually starts a full discovery process:

 SE readers are enumerated

 For the first reader, if a SE is present, open a session.

 On this session, call the isMatching method of the SERecognizer object given at

construction time.

 The session is closed.

 If the isMatching method returns false, the process is continued with the next reader.

 If the isMatching method returns true, the reader object is returned.

The sessions used by the discovery process are closed to avoid the risk of leaks: if

they were opened and returned to the caller, there would be a risk for the caller to

forget to close them.

Calling getFirstMatch twice simply restarts the discovery process (e.g. probably

returns the same result, unless a SE has been removed).

Return Value:

The first matching SE reader, or null if there is none.

Errors:

NONE. All errors must be caught within the implementation.

(c) Method: Reader getNextMatch()

Returns the next SE reader containing a SE that matches the search criterion.

Actually continues the discovery process:

 For the next reader in the enumeration, if a SE is present, open a session.

 On this session, call the isMatching method of the SERecognizer object given at

construction time.

 The session is closed.

 If the isMatching method returns false, the process is continued with the next reader.

 If the isMatching method returns true, the reader object is returned.

Return Value:

The next matching SE reader, or null if there is none.

Securing the future of mobile services Open Mobile API Specification 38

Security, Identity, Mobility

Errors:

IllegalStateError - if the getNextMatch() method is called without calling

getFirstMatch() before, since the creation of the SEDiscovery object, or since the last

call to getFirstMatch or getNextMatch that returned null.

7.6.2 Class: SERecognizer

Base class for recognizer classes.

Extended by system-provided recognizers, or by custom recognizers.

(a) Method: boolean isMatching(Session session)

This is a call-back method that will be called during the discovery process, once per

SE inserted in a reader. Application developers can use the given session object to

perform any discovery algorithm they think is appropriate. They can use the Transport

API or any other API, conforming to access control rules & policy, like for regular

application code (i.e. this is not privileged code).

Parameters:

session - a session object that is used to perform the discovery. Never null.

Return value:

A boolean indicating whether the SE to which the given session has been open is

matching with the recognition criterion implemented by this method.

Errors:

NONE. All errors must be caught within the implementation of the method, and must

be translated in a “false” result.

7.6.3 Class: SERecognizerByATR

Instances of this class can be used to find a SE with a specific ATR (or ATR pattern).

(a) Constructor: SERecognizerByATR (byte[] atr, byte[] mask)

Parameters:

atr - a byte array containing the ATR bytes values that are searched for.

mask - a byte array containing an AND-mask to be applied to the SE ATR values

before to be compared with the searched value.

Errors:

IllegalParameterError – if ATR is invalid.

7.6.4 Class: SERecognizerByHistoricalBytes

Instances of this class can be used to find a SE with a specific value in their historical

bytes.

(a) Constructor: SERecognizerByHistoricalBytes (byte[] values)

Parameters:

values - byte array, to be checked for presence in the historical bytes.

Errors:

IllegalParameterError – if historical bytes are invalid.

7.6.5 Class: SERecognizerByAID

Instances of this class can be used to find a SE implementing a specific applet, identified

by its AID. The presence of such an applet is verified by trying to open a channel to this

applet. The opened channel, if any, is closed before the end of the isMatching method.

Securing the future of mobile services Open Mobile API Specification 39

Security, Identity, Mobility

(a) Constructor: SERecognizerByAID (byte[] aid)

Parameters:

aid - byte array holding the AID to be checked for presence.

Errors:

IllegalParameterError – if AID is invalid.

7.7 File management
API for file management to read and write the content of files in an ISO/IEC 7816-4 compliant file

system provided by the SE’s OS or applet (installed in the SE).

Figure 7-7: File management overview

7.7.1 Class: FileViewProvider

This Provider class simplifies file operations on SEs with a file structure specified in

ISO/IEC 7816-4.

Methods are provided that allows file content to be read or written. If the read or write

operation is not allowed because security conditions are not satisfied, a SecurityError will

be returned. It must be considered that a file operation can only be applied onto a file

which has a corresponding structure.

Prerequisites:

This Provider requires an ISO/IEC 7816-4 compliant file system on the SE. If this file

system is implemented by an applet within the SE then this applet must be preselected

before this Provider can be used, in case that the applet is not default selected (e.g. the

GSM Applet as default selected applet on a UICC).

Notes:

 If used by multiple threads, synchronisation is up to the application.

 Each operation needs an access to the SE. If access cannot be granted because of a

closed channel or a missing security condition, the called method will return an error.

Secure Element (SE)

Applet or OS with ISO/

IEC7816-4 file system

Mobile Device

Open Mobile API

Transport API

Service API

File Service

Securing the future of mobile services Open Mobile API Specification 40

Security, Identity, Mobility

 Using the basic channel for accessing the file system of the UICC (provided by the

default selected GSM Applet) implies the risk of interferences from the baseband

controller, as the baseband controller works internally on the basic channel and can

modify the current file selected state on the basic channel anytime. This means a file

selection performed by this FileViewProvider does not guarantee a permanent file

selection state on the UICC’s basic channel and the application using the

FileViewProvider has to take care to have the needed file selection state. The

FileViewProvider itself cannot avoid interferences from the baseband controller on the

basic channel, but the risk could be minimised if the application using the

FileViewProvider performs implicit selections for the file operation or performs the file

selection immediately before the file operation.

(a) Constant: CURRENT_FILE

Indicates for file operation methods that the currently selected file shall be used for the

file operation.

(b) Constant: INFO_NOT_AVAILABLE

Indicates that the demanded information is not available.

(c) Constructor: FileViewProvider(Channel channel)

Encapsulates the defined channel by a FileViewProvider object that can be used for

performing file operations on it.

Parameters:

channel - the channel that shall be used by this Provider for file operations.

Errors:

IllegalStateError - if the defined channel is closed.

Note:

A file must be selected before a file operation can be performed. The file can be

implicitly selected via a short file identifier (SFI), by the file operation method itself or

explicitly by defining the file ID (FID) with selectByFID(int) or path with

selectByPath(String, boolean).

(d) Method: FCP selectByPath(String path, boolean fromCurrentDF)

Selects the file specified by a path.

The path references the SE file by a path (concatenation of file IDs and the order of

the file IDs is always in the direction ’parent to child’) in the following notation:

"DF1:DF2:EF1". e.g. "0023:0034:0043". The defined path is applied to the SE as

specified in ISO/IEC 7816-4. Note: For performing read or write operations on a file

the last knot in the path must reference an EF that can be read or written.

Parameters:

path - the path that references a file (DF or EF) on the SE. This path shall not contain

the current DF or MF at the beginning of the path.

fromCurrentDF - if true then the path is selected from the current DF,

if false then the path is selected from the MF.

Return value:

The FCP containing information about the selected file.

Errors:

IllegalParameterError - if the defined path is invalid.

IllegalStateError - if the defined channel is closed.

Securing the future of mobile services Open Mobile API Specification 41

Security, Identity, Mobility

SecurityError - if the operation is not allowed because the security conditions are not

satisfied.

IllegalReferenceError - if the file could not be selected.

OperationNotSupportedError - if this operation is not supported.

Notes:

 A file must be selected before a file operation can be performed.

 This method is based on the ISO/IEC 7816-4 command SELECT.

(e) Method: FCP selectByFID(int fileID)

Selects the file specified by the FID.

The file ID references the SE file (DF or EF) by a FID. The FID consists of a two byte

value as defined in ISO/IEC 7816-4.

Parameters:

fileID - the FID that references the file (DF or EF) on the SE. The FID must be in the

range of (0x0000-0xFFFF).

Return value:

The FCP containing information about the selected file.

Errors:

IllegalParameterError - if the defined fileID is not valid.

IllegalStateError - if the defined channel is closed.

SecurityError - if the operation is not allowed because the security conditions are not

satisfied.

IllegalReferenceError - if the File could not be selected.

OperationNotSupportedError - if this operation is not supported.

Notes:

 A file must be selected before a file operation can be performed.

 This method is based on the ISO/IEC 7816-4 command SELECT.

(f) Method: FCP selectParent()

Selects the parent DF of the current DF.

The parent DF of the currently selected file is selected according to ISO/IEC 7816-4.

If the currently selected file has no parent then nothing will be done.

Return value:

The FCP containing information about the selected file.

Errors:

IllegalStateError - if the defined channel is closed.

SecurityError - if the operation is not allowed because the security conditions are not

satisfied.

IllegalReferenceError - if the File could not be selected.

OperationNotSupportedError - if this operation is not supported.

Notes:

 A file must be selected before a file operation can be performed.

 This method is based on the ISO/IEC 7816-4 command SELECT.

Securing the future of mobile services Open Mobile API Specification 42

Security, Identity, Mobility

(g) Method: Record readRecord(int sfi, int recID)

Returns the record which corresponds to the specified record ID. If the record is not

found, then null will be returned.

Parameters:

sfi - the SFI of the file which shall be selected for this read operation. CURRENT_FILE

can be applied if the file is already selected. The sfi must be in the range of (1-30).

recID - the record ID that references the record that should be read.

Return value:

The record which corresponds to the specified record ID.

Errors:

IllegalStateError - if the used channel is closed.

IllegalStateError - if no file is currently selected.

IllegalStateError - if the currently selected file is not a record based file.

IllegalStateError - if the record could not not be read.

SecurityError - if the operation is not allowed because the security conditions are not

satisfied.

IllegalReferenceError - if the file could not be selected via SFI.

IllegalParameterError - if the defined SFI is not valid.

IllegalParameterError - if the defined record ID is invalid.

OperationNotSupportedError - if this operation is not supported.

Note:

This method is based on the ISO/IEC 7816-4 command READ RECORD.

(h) Method: void writeRecord(int sfi, Record rec)

Writes a record into the specified file.

Parameters:

sfi - the SFI of the file which shall be selected for this write operation. CURRENT_FILE

can be applied if the file is already selected. The sfi must be in the range of (1-30).

rec - the Record that shall be written.

Errors:

IllegalStateError - if the used channel is closed.

IllegalStateError - if no file is currently selected.

IllegalStateError - if the currently selected file is not a record based file.

IllegalStateError - if the record could not be written.

SecurityError - if the operation is not allowed because the security conditions are not

satisfied.

IllegalReferenceError - if the file could not be selected via SFI.

IllegalParameterError - if the defined record is invalid.

IllegalParameterError - if the defined SFI is not valid.

OperationNotSupportedError - if this operation is not supported.

Note:

This method is based on the ISO/IEC 7816-4 command APPEND RECORD and

UPDATE RECORD (which replaces existing bytes).

(i) Method: int[] searchRecord(int sfi, byte[] searchPattern)

Securing the future of mobile services Open Mobile API Specification 43

Security, Identity, Mobility

Returns the record numbers that contains the defined search pattern.

Parameters:

sfi - the SFI of the file which shall be selected for this search operation.

CURRENT_FILE can be applied if the file is already selected. The sfi must be in the

range of (1-30).

searchPattern - the pattern that shall match with records.

Return value:

A list of record numbers (position 1..n of the record in the file) of the records which

match to the search pattern. If no record matches then null will be returned.

Errors:

IllegalParameterError - if the defined SFI is not valid.

IllegalStateError - if the used channel is closed.

IllegalStateError - if no file is currently selected.

IllegalStateError - if the currently selected file is not a record based file.

IllegalStateError - if the search pattern is empty.

IllegalStateError - if the search pattern is too long.

IllegalStateError - if the data could not be searched.

SecurityError - if the operation is not allowed because the security conditions are not

satisfied.

IllegalReferenceError - if the file could not be selected via SFI.

OperationNotSupportedError - if this operation is not supported.

Note

This method is based on the ISO/IEC 7816-4 command SEARCH RECORD with

simple search.

(j) Method: byte[] readBinary(int sfi, int offset, int length)

Reads content of the selected transparent file at the position specified by offset and

length.

Parameters:

sfi - the SFI of the file which shall be selected for this read operation. CURRENT_FILE

can be applied if the file is already selected. The sfi must be in the range of (1-30).

offset - defines the start point of the file where the data should be read.

length - defines the length of the data which should be read.

Return value:

The data read from the file or null if no content is available.

Errors:

IllegalParameterError - if the defined SFI is not valid.

IllegalParameterError - if the defined offset and length could not be applied.

IllegalStateError - if the used channel is closed.

IllegalStateError - if no file is currently selected.

IllegalStateError - if the currently selected file is not a transparent file.

IllegalStateError - if the data could not be read.

SecurityError - if the operation is not allowed because the security conditions are not

satisfied.

IllegalReferenceError - if the file could not be selected via SFI.

OperationNotSupportedError - if this operation is not supported.

Securing the future of mobile services Open Mobile API Specification 44

Security, Identity, Mobility

Note:

This method is based on the ISO/IEC 7816-4 command READ BINARY.

(k) Method: void writeBinary(int sfi, byte[] data, int offset, int length)

Writes the defined data into the selected file at the position specified by offset and

length.

Parameters:

sfi - the SFI of the file which shall be selected for this write operation. CURRENT_FILE

can be applied if the file is already selected. The sfi must be in the range of (1-30).

data - the data which shall be written.

offset – defines the position in the file where the data should be stored.

length - defines the length of the data which shall be written.

Errors:

IllegalParameterError - if the defined SFI is not valid.

IllegalParameterError - if the defined data array is empty or too short.

IllegalParameterError - if the defined offset and length could not be applied.

IllegalStateError - if the used channel is closed.

IllegalStateError - if no file is currently selected.

IllegalStateError - if the currently selected file is not a transparent file.

IllegalStateError - if the data could not be written.

SecurityError - if the operation is not allowed because the security conditions are not

satisfied.

IllegalReferenceError - if the file could not be selected via SFI.

OperationNotSupportedError - if this operation is not supported.

Note:

This method is based on the ISO/IEC 7816-4 command UPDATE BINARY.

7.7.2 Class: FileViewProvider:FCP

File control parameter contains information of a selected file. FCPs are returned after a

file select operation. This class is based on the ISO/IEC 7816-4 FCP returned by the

SELECT command as specified in ISO/IEC 7816-4 in chapter 5.3.3 (File control

information) in table 12 (File control parameter data objects).

(a) Method: byte[] getFCP()

Returns the complete FCP as byte array.

Return value:

The complete FCP as byte array.

Note:

This method is based on the FCP control parameter as specified in ISO/IEC 7816-4 in

chapter 5.3.3 (File control information) in table 12 (File control parameter data objects).

(b) Method: int getFileSize()

Returns the file size of the selected file (number of data bytes in the file, excluding

structural information).

Return value:

The file size depending on the file type:

 Transparent EF: the length of the body part of the EF.

Securing the future of mobile services Open Mobile API Specification 45

Security, Identity, Mobility

 Linear fixed or cyclic EF: record length multiplied by the number of records of the

EF.

INFO_NOT_AVAILABLE if the information is not available.

Note:

This method is based on the FCP control parameter as specified in ISO/IEC 7816-4 in

chapter 5.3.3 (File control information) in table 12 (file control parameter data objects).

(c) Method: int getTotalFileSize()

Returns the total file size of the selected file (number of data bytes in the file, including

structural information if any).

Return value:

The total file size depending on the file type:

 DF/MF: the total file size represents the sum of the file sizes of all the EFs and DFs

contained in this DF, plus the amount of available memory in this DF. The size of

the structural information of the selected DF itself is not included.

 EF: the total file size represents the allocated memory for the content and the

structural information (if any) of this EF.

INFO_NOT_AVAILABLE if the information is not available.

Note:

This method is based on the FCP control parameter as specified in ISO/IEC 7816-4 in

chapter 5.3.3 (file control information) in table 12 (file control parameter data objects).

(d) Method: int getFID()

Returns the file identifier of the selected file.

Return value:

The file identifier of the selected file.

INFO_NOT_AVAILABLE if the FID of the selected file is not available.

Note:

This method is based on the FCP control parameter as specified in ISO/IEC 7816-4 in

chapter 5.3.3 (file control information) in table 12 (file control parameter data objects).

(e) Method: int getSFI()

Returns the short file identifier of the selected EF file.

Return value:

The short file identifier of the selected file.

INFO_NOT_AVAILABLE if selected file is not an EF or an SFI is not available.

Note:

This method is based on the FCP control parameter as specified in ISO/IEC 7816-4 in

chapter 5.3.3 (file control information) in table 12 (file control parameter data objects).

(f) Method: int getMaxRecordSize()

Returns the maximum record size in case of a record based EF.

Return value:

The maximum record size in case of a record based EF.

Securing the future of mobile services Open Mobile API Specification 46

Security, Identity, Mobility

INFO_NOT_AVAILABLE if the currently selected file is not record based or the

information cannot be fetched.

Note:

This method is based on the FCP control parameter as specified in ISO/IEC 7816-4 in

chapter 5.3.3 (file control information) in table 12 (file control parameter data objects).

(g) Method: int getNumberOfRecords()

Returns the number of records stored in the EF in case of a record based EF.

Return value:

The number of records stored in the EF in case of a record based EF.

INFO_NOT_AVAILABLE if the currently selected file is not record based or the

information cannot be fetched.

Note:

This method is based on the FCP control parameter as specified in ISO/IEC 7816-4 in

chapter 5.3.3 (file control information) in table 12 (file control parameter data objects).

(h) Method: int getFileType()

Returns the file type of the currently selected file.

Return value:

The file type:

 (0) DF

 (1) EF

INFO_NOT_AVAILABLE if the information cannot be fetched.

Note:

This method is based on the FCP control parameter as specified in ISO/IEC 7816-4 in

chapter 5.3.3 (file control information) in table 12 (file control parameter data objects).

The file type is based on the definition in table 14 (file descriptor byte).

(i) Method: int getFileStructure()

Returns the structure type of the selected EF.

Return value:

The structure type of the selected file:

 (0) NO_EF

 (1) TRANSPARENT

 (2) LINEAR_FIXED

 (3) LINEAR_VARIABLE

 (4) CYCLIC

INFO_NOT_AVAILABLE if the information cannot be fetched.

Note:

This method is based on the FCP control parameter as specified in ISO/IEC 7816-4 in

chapter 5.3.3 (file control information) in table 12 (file control parameter data objects).

The file structure is based on the definition in table 14 (file descriptor byte).

(j) Method: int getLCS()

Returns the lifecycle state of the currently selected file.

Securing the future of mobile services Open Mobile API Specification 47

Security, Identity, Mobility

Return value:

The lifecycle state:

 (0) NO_INFORMATION_GIVEN

 (1) CREATION_STATE

 (2) INITIALISATION_STATE

 (3) OPERATIONAL_STATE_ACTIVATED

 (4) OPERATIONAL_STATE_DEACTIVATED

 (5) TERMINATION_STATE

INFO_NOT_AVAILABLE if the information is not available.

Note:

This method is based on the FCP control parameter as specified in ISO/IEC 7816-4 in

chapter 5.3.3 (file control information) in table 12 (file control parameter data objects).

The lifecycle status is based on the definition in table 13 (lifecycle status byte).

7.7.3 Class: FileViewProvider:Record

Record class serves as a container for record data. The created record (as immutable

object) can be used to read record data from a file or to write record data to a file.

(a) Contructor: Record(int id, byte[] data)

Creates a record instance which can be used to store record data.

Parameter:

id - the record id that shall be stored.

data - the data that shall be stored.

(b) Method: int getID()

Returns the record ID of this record.

Return value:

The record ID of this record.

(c) Method: byte[] getData()

Returns the data of this record.

Return value:

The data of this record.

Securing the future of mobile services Open Mobile API Specification 48

Security, Identity, Mobility

7.8 Authentication service
Provides an API to perform a PIN authentication on the SE to enable an authentication state.

Use cases:

 Performing an operation on the SE which requires a user authentication.

o e.g. for reading a file from the SE’s file system which is PIN protected.

o e.g. for using a key from the SE which requires a PIN authentication.

 Moreover the API allows the management of SE PINs with management commands like reset,

change, activate and deactivate.

Figure 7-8: Authentication service overview

7.8.1 Class: AuthenticationProvider

This Authentication class can be used to privilege a certain communication channel to the

SE for operations that require a PIN authentication. Besides the PIN verification for

authentication, this class also provides PIN management commands for changing,

deactivating or activating PINs.

Prerequisites:

The PIN operations performed by this AuthenticationProvider class are based on the

ISO/IEC 7816-4 specification and require a preselected applet on the specified

communication channel to the SE that implements ISO/IEC 7816-4 compliant PIN

commands.

Notes:

 If used by multiple threads, synchronisation is up to the application.

 Each operation needs access to the SE. If access cannot be granted because of a

closed channel or a missing security condition, the called method will return an error.

(a) Constructor: AuthenticationProvider(Channel channel)

Encapsulates the defined channel by an AuthenticationProvider object that can be

used for applying PIN commands on it.

Parameters:

channel - the channel that should be privileged for operations which require a PIN

authentication.

Secure Element (SE)

Applet or OS with ISO/

IEC7816-4 PIN commands

Mobile Device

Open Mobile API

Transport API

Service API

Authentication Service

Securing the future of mobile services Open Mobile API Specification 49

Security, Identity, Mobility

Errors:

IllegalStateError - if the defined channel is closed.

(b) Method: boolean verifyPin(PinID pinID, byte[] pin)

Performs a PIN verification.

Parameters:

pinID - the PIN ID references the PIN in the SE which shall be used for the verification.

pin - the PIN that shall be verified.

Return value:

True if the authentication was successful.

False if the authentication fails.

Errors:

IllegalParameterError - if the PIN value has bad coding or a wrong length (empty or

too long).

IllegalStateError - if the used channel is closed.

IllegalReferenceError - if the PIN reference as defined could not be found in the SE.

OperationNotSupportedError - if this operation is not supported.

Note:

This method is based on the ISO/IEC 7816-4 command VERIFY.

When the PIN is blocked, the method returns false. Clients have to use

getRetryCounter to check for a blocked PIN.

(c) Method: void changePin(PinID pinID, byte[] oldPin, byte[] newPin)

Changes the PIN.

Parameters:

pinID - the PIN ID references the PIN in the SE which shall be changed.

oldPin - the old PIN that shall be changed.

newPin - the PIN that shall be set as the new PIN.

Errors:

IllegalParameterError - if the value of oldPin or newPIN has bad coding or a wrong

length (empty or too long).

IllegalStateError - if the used channel is closed.

SecurityError - if old PIN does not match with the PIN stored in the SE. The PIN is not

changed.

IllegalReferenceError - if the PIN reference as defined could not be found in the SE.

OperationNotSupportedError - if this operation is not supported.

Note:

This method is based on the ISO/IEC 7816-4 command CHANGE REFERENCE

DATA.

(d) Method: void resetPin(PinID pinID, byte[] resetPin, byte[] newPin)

Resets the PIN with the reset PIN or just resets the retry counter.

Parameters:

pinID - the PIN ID references the PIN in the SE which shall be reset.

resetPin - the reset PIN that shall be used for reset.

Securing the future of mobile services Open Mobile API Specification 50

Security, Identity, Mobility

newPin - the PIN that shall be set as new PIN. Can be omitted with null if just the reset

counter shall be reset.

Errors:

IllegalParameterError - if the value of resetPin or newPIN has bad coding or a wrong

length (empty or too long).

IllegalStateError - if the used channel is closed.

SecurityError - if resetPIN does not match with the "reset PIN" stored in the SE. The

PIN or reset counter is not changed.

IllegalReferenceError - if the PIN ID reference as defined could not be found in the SE.

OperationNotSupportedError - if this operation is not supported (e.g. PIN is not

defined).

Note:

This method is based on the ISO/IEC 7816-4 command RESET RETRY COUNTER.

(e) Method: int getRetryCounter(PinID pinID)

Returns the retry counter of the referenced PIN.

Parameters:

pinID - the PIN ID references the PIN in the SE and its retry counter.

Return value:

The retry counter of the referenced PIN.

Errors:

IllegalStateError - if the used channel is closed.

IllegalReferenceError - if the PIN reference as defined could not be found in the SE.

OperationNotSupportedError - if this operation is not supported.

Note:

This method is based on the ISO/IEC 7816-4 command VERIFY.

(f) Method: void activatePin(PinID pinID, byte[] pin)

Activates the PIN. Thus a deactivated PIN can be used again.

Parameters:

pinID - the PIN ID references the PIN in the SE which shall be activated.

pin - the verification PIN for activating the PIN if required. Can be omitted with null if

not required.

Errors:

IllegalParameterError - if the PIN value has bad coding or a wrong length (empty or

too long).

IllegalStateError - if the used channel is closed.

SecurityError - if the defined pin does not match with the PIN needed for the activation.

The PIN state will not be changed.

IllegalReferenceError - if the PIN reference as defined could not be found in the SE.

OperationNotSupportedError - if this operation is not supported.

Securing the future of mobile services Open Mobile API Specification 51

Security, Identity, Mobility

Note:

This method is based on the ISO/IEC 7816-4 command ENABLE VERIFICATION

REQUIREMENT.

(g) Method: void deactivatePin(PinID pinID, byte[] pin)

Deactivates the PIN. Thus the objects which are protected by the PIN can now be used

without this restriction until activatePin() is called.

Parameters:

pinID - the PIN ID references the PIN in the SE which shall be deactivated.

pin - the verification PIN for deactivating the pin if required. Can be omitted with null if

not required.

Errors:

IllegalParameterError - if the PIN value has bad coding or a wrong length (empty or

too long).

IllegalStateError - if the used channel is closed.

SecurityError - if the defined PIN does not match with the PIN needed for the

deactivation. The PIN state will not be changed.

IllegalReferenceError - if the PIN reference as defined could not be found in the SE.

OperationNotSupportedError - if this operation is not supported.

Note:

This method is based on the ISO/IEC 7816-4 command DISABLE VERIFICATION

REQUIREMENT.

7.8.2 Class: AuthenticationProvider:PinID

This PIN ID uniquely identifies a PIN in the SE system. The PIN ID is defined as specified

in ISO/IEC 7816-4 and can be used to reference a PIN in an ISO/IEC 7816-4 compliant

system.

(a) Constructor: PinID(int id, boolean local)

Creates a PIN ID (reference) to identify a PIN within a SE. The created PIN ID (as

immutable object) can be specified on all PIN operation methods provided by the

AuthenticationProvider class.

Parameters:

id - the ID of the PIN (value from 0x00 to 0x1F).

local - defines the scope (global or local). True if the PIN is local. Otherwise, false.

Errors:

IllegalParameterError - if the defined ID is invalid.

Note:

This constructor is based on the P2 reference data for PIN related commands as

specified in ISO/IEC 7816-4 in chapter 7.5 (basic security handling). Local set to true

indicates specific reference data and local set to false indicates global reference data

according to ISO/IEC 7816-4. The ID indicates the number of the reference data

(qualifier) according to ISO/IEC 7816-4.

(b) Method: int getID()

Returns the PIN ID.

Securing the future of mobile services Open Mobile API Specification 52

Security, Identity, Mobility

Return value:

The PIN ID.

Note:

This method is based on the P2 reference data for PIN related commands as specified

in ISO/IEC 7816-4 in chapter 7.5 (basic security handling). The ID indicates the

number of the reference data (qualifier) according to ISO/IEC 7816-4.

(c) Method: boolean isLocal()

Identifies if the PIN is local or global.

Return value:

True if the PIN is local. Otherwise, false.

Note:

This method is based on the P2 reference data for PIN related commands as specified

in ISO/IEC 7816-4 in chapter 7.5 (basic security handling). Local set to true indicates

specific reference data and local set to false indicates global reference data according

to ISO/IEC 7816-4.

Securing the future of mobile services Open Mobile API Specification 53

Security, Identity, Mobility

7.9 PKCS#15 API
The PKCS#15 standard is a structured way to store and organise data. The PKCS#15 service

API simplifies access to PKCS#15 file systems according to v1.1 of the PKCS#15 specification.

Classes and methods are provided to retrieve the elementary PKCS#15 data structures, such as

ODF (Object Directory File) and TokenInfo.

PKCS#15 file systems can be used to store cryptographic data, but also, any kind of data using

application-specific files and OIDs. For example in the OMA-DM use case, the bootstrap data can

be stored in the SE’s file system using a dedicated PKCS#15 file structure. This PKCS#15 API

can be used by an OMA-DM client application to retrieve the bootstrap data from a SE.

The preferred way to select a PKCS#15 file system is through the PKCS#15 AID (A0 00 00 00 63

50 4B 43 53 2D 31 35), however, a legacy file system can reference a PKCS#15 data structure

though the EF(DIR).

Example of a typical PKCS#15 file system:

 ADF(PKCS#15) : AID = A0 00 00 00 63 50 4B 43 53 2D 31 35

 |-EF(ODF) : FID = 5031

 |-EF(TokenInfo) : FID = 5032

 |-EF(PrKDF) : optional, referenced by EF(ODF)

 |-EF(PuKDF) : optional, referenced by EF(ODF)

 |-EF(CDF) : optional, referenced by EF(ODF)

 |-EF(DODF) : optional, referenced by EF(ODF)

 |-EF(AODF) : optional, referenced by EF(ODF)

Example of a legacy file system with a PKCS#15 structure:

 MF : FID=3F00

 |-EF(DIR) : FID=2F00

 |-DF(PKCS#15) : referenced by EF(DIR)

 |-EF(ODF) : FID = 5031

 |-EF(TokenInfo) : FID = 5032

Figure 7-9: PKCS#15 service overview

Secure Element (SE)

File system with PKCS#15

structures

Mobile Device

Open Mobile API

Transport API

Service API

PKCS#15 Service

Securing the future of mobile services Open Mobile API Specification 54

Security, Identity, Mobility

7.9.1 Class: PKCS15Provider

This Provider class offers basic services to access a PKCS#15 file system. This Provider

requires a PKCS#15 data structure on the SE and a channel instance allowing access to

this PKCS#15 data structure.

(a) Constant: byte[] AID_PKCS15

Default PKCS#15 AID (A0 00 00 00 63 50 4B 43 53 2D 31 35).

(b) Constructor: PKCS15Provider(Channel channel)

Encapsulates the defined channel by a PKCS#15 file system object. This method

checks the presence of the EF(ODF) (Object Directory File) with file identifier 5031

and of the EF(TokenInfo) with file identifier 5032. Both files are mandatory and must

be present in a valid PKCS#15 file system.

This method must first try to select EF(ODF) and EF(TokenInfo) on the provided

channel. If the select fails, this method must try to locate a DF(PKCS#15) in the legacy

file system using the EF(DIR) according to the data structure described in chapter 5.4

of the PKCS#15 specification (v1.1).

Parameters:

channel - the channel that shall be used by this Provider for file operations.

Errors:

IOError - if no PKCS#15 file system is detected on the provided channel.

(c) Method: byte[] getODF()

Returns the raw content of the EF(ODF) (Object Directory File).

Return value:

The EF(ODF) as a byte array. Must not be null.

(d) Method: byte[] getTokenInfo()

Returns the raw content of the EF(TokenInfo).

Return value:

The EF(TokenInfo) as a byte array. Must not be null.

(e) Method: Path[] getPrivateKeyPaths()

Returns an array of EF(PrKDF) paths (Private Key Directory Files). The PKCS#15 file

system may contain zero, one or several EF(PrKDF).

Return value:

The array of EF(PrKDF) paths. May be null if empty.

(f) Method: Path[] getPublicKeyPaths()

Returns an array of EF(PuKDF) paths (Public Key Directory Files). The PKCS#15 file

system may contain zero, one or several EF(PuKDF).

Return value:

The array of EF(PuKDF) paths. May be null if empty.

Securing the future of mobile services Open Mobile API Specification 55

Security, Identity, Mobility

(g) Method: Path[] getCertificatePaths()

Returns an array of EF(CDF) paths (Certificate Directory Files). The PKCS#15 file

system may contain zero, one or several EF(CDF).

Return value:

The array of EF(CDF) paths. May be null if empty.

(h) Method: Path[] getDataObjPaths()

Returns an array of EF(DODF) paths (Data Object Directory Files). The PKCS#15 file

system may contain zero, one or several EF(DODF).

Return value:

The array of EF(DODF) paths. May be null if empty.

(i) Method: Path[] getAuthObjPaths()

Returns an array of EF(AODF) paths (Authentication Object Directory Files). The

PKCS#15 file system may contain zero, one or several EF(AODF).

Return value:

The array of EF(AODF) paths. May be null if empty.

(j) Method: byte[] readFile(Path path)

Selects and reads a PKCS#15 file. The file may be a transparent or linear fixed EF.

The 'index' and 'length' fields of the path instance will be used according to chapter

6.1.5 of the PKCS#15 specification (v1.1). In case of transparent EF, 'index' is the start

offset in the file and 'length' is the length to read. In case of linear fixed EF, 'index' is

the record to read.

Parameters:

path - path of the file.

Return value:

The file content as a byte array. Or null if the referenced path does not exist.

Errors:

SecurityError - if the operation cannot be performed, if a security condition is not

satisfied.

OperationNotSupportedError - if this operation is not supported.

IOError - if the PKCS#15 file cannot be selected or read.

(k) Method: byte[] searchOID(byte[] dodf, String oid)

Parses the raw content of an EF(DODF) and searches for a specific OID Data Object.

This method is a convenience method to simplify the access to OID Data Objects by

applications, as described in chapter 6.7.4 of the PKCS#15 specification (v1.1). In

many cases, the EF(DODF) contains a simple OID Data Object with a Path object, in

order to reference an application-specific EF. For example, the OMA-DM specification

requires a EF(DODF) containing the OID 2.23.43.7.1, followed by a path object,

referencing the EF(DM_Bootstrap).

Parameters:

dodf - the raw content of an EF(DODF) to parse.

oid - the searched OID value (e.g. OMA-DM bootstrap OID is 2.23.43.7.1).

Securing the future of mobile services Open Mobile API Specification 56

Security, Identity, Mobility

Return value:

The raw object value if OID has been found, null if not found.

Errors:

IllegalParameterError - if the OID is not correct.

OperationNotSupportedError - if this operation is not supported.

(l) Method: Path decodePath(byte[] der)

Builds a path object using a DER-encoded (see ITU X.690 for DER-Coding) buffer.

Parameters:

der - the DER-encoded path object as a byte array.

Return value:

The path object.

Errors:

IllegalParameterError - if the defined path is not a correctly DER-encoded buffer.

OperationNotSupportedError - if this operation is not supported.

7.9.2 Class: PKCS15Provider:Path

This class represents a path object as defined in chapter 6.1.5 of the PKCS#15

specification (v1.1).

(a) Constructor: Path(byte[] path)

Builds a path object without index and length (the path can be absolute as well as

relative).

Parameters:

path - the path as a byte array.

Errors:

IllegalParameterError - if the path is not correct.

(b) Constructor: Path(byte[] path, int index, int length)

Builds a path object with index and length (the path can be absolute as well as relative).

Parameters:

path - the path as a byte array.

Index - the index value.

length - the length value.

Errors:

IllegalParameterError - if the path, index or length is not correct.

(c) Method: byte[] getPath()

Returns the path field of this path object.

Return value:

The path field.

(d) Method: boolean hasIndexLength()

Checks whether this path object has an index and length fields.

Securing the future of mobile services Open Mobile API Specification 57

Security, Identity, Mobility

Return value:

True if the index and length field is present, false otherwise.

(e) Method: int getIndex()

Returns the index field of this path object. The value of this field is undefined if the

method hasIndexLength() returns false.

Return value:

The index field.

(f) Method: int getLength()

Returns the length field of this path object. The value of this field is undefined if the

method hasIndexLength() returns false.

Return value:

The length field.

(g) Method: byte[] encode()

Encodes this path object according to DER (see ITU X.690 for DER-Coding).

Return value:

This path object as a DER-encoded byte array.

Securing the future of mobile services Open Mobile API Specification 58

Security, Identity, Mobility

7.10 Secure Storage
The Secure Storage (SS) Service can be used to store and retrieve sensitive data on the SE. This

API requires a SS Applet on the SE with an APDU interface as defined below.

Data is stored in a dictionary format (string, value). It is simpler to store data in the SS than with

a PKCS#15Provider or FileViewProvider, which can, in principle, also be used to store data

securely but in a more elaborate way.

Figure 7-10: Secure Storage service overview

7.10.1 Class: SecureStorageProvider

This class provides an API to store and retrieve data on the SE which is protected in a

secure environment. A default set of functionality that is always provided on every platform

enables application developers to rely on this interface for secure data storage (e.g. credit

card numbers, private phone numbers, passwords etc.). The interface should encapsulate

any SE specifics as it is intended for device application developers who might not be

familiar with SE or APDU internals.

Security Notes:

A PIN verification is required to grant access to the SS Applet where the Authentication

Provider can be reused for the PIN operations. The SS Applet must separate the PIN

verification on all logical channels to ensure that each device application needs to verify

the PIN individually.

Prerequisites:

The SS operations performed by this Provider class are based on a SS located in the SE.

The SS is usually realised by an applet (providing the defined SS APDU interface) that

must be preselected on the specified communication channel to the SE before this

Provider can be used.

Notes:

 If used by multiple threads, synchronisation is up to the application.

 Each operation needs access to the SE. If access cannot be granted because of a

closed channel or a missing security condition, the called method will return an error.

Secure Element (SE)

Secure Storage (SS) Applet

Mobile Device

Open Mobile API

Transport API

Service API

Secure Storage (SS) Service

Securing the future of mobile services Open Mobile API Specification 59

Security, Identity, Mobility

(a) Constructor: SecureStorageProvider(Channel channel)

Creates a SecureStorageProvider instance which will be connected to the preselected

SE SS Applet on a defined channel.

Parameters:

channel - the channel that shall be used by this Provider for operations on the SS.

Errors:

IllegalStateError - if the defined channel is closed.

(b) Method: void create(String title, byte[] data)

This command creates a SS entry with the defined title and data. The data can contain

an uninterpreted byte stream of an undefined max length (e.g. names, numbers,

image, media data, etc).

Parameters:

title - the title of the entry that shall be written. The maximum title length is 60. All

characters must be supported by UTF-8.

data - the data of the entry that shall be written. If data is empty or null then only the

defined title will be assigned to the new entry.

Errors:

IllegalParameterError - if the title already exists. All entry titles must be unique within

the SS.

IllegalParameterError - if the title is incorrect: bad encoding or wrong length (empty or

too long).

IllegalParameterError - if the data chain is too long.

IllegalStateError - if the used channel is closed.

SecurityError - if the PIN to access the SS Applet was not verified.

IOError – if the entry could not be created because of an incomplete write procedure.

(c) Method: void update(String title, byte[] data)

This command updates the data of the SS entry referenced by the defined title. The

data can contain an uninterpreted byte stream of an undefined max length (e.g. names,

numbers, image, media data, etc.).

Parameters:

title - the title of the entry that must already exist. The maximum title length is 60. All

characters must be supported by UTF-8.

data - the data of the entry that shall be written. If data is empty or null then the data

of the existing entry (referenced by the title) will be deleted.

Errors:

IllegalParameterError - if the title does not already exist.

IllegalParameterError - if the title is incorrect: bad encoding or wrong length (empty or

too long).

IllegalParameterError - if the data chain is too long.

IllegalStateError - if the used channel is closed.

SecurityError - if the PIN to access the SS Applet was not verified.

IOError – if the entry could not be updated because of an incomplete write procedure.

(d) Method: byte[] read(String title)

Securing the future of mobile services Open Mobile API Specification 60

Security, Identity, Mobility

This command reads and returns the byte stream of a data entry stored in the SE

referenced by the title.

Parameters:

title - the title of the entry that shall be read. The maximum title length is 60. All

characters must be supported by UTF-8.

Return value:

The data retrieved from the referenced entry. If the data does not exist in the SS entry

referenced by the title then an empty byte array will be returned.

Errors:

IllegalParameterError - if the title is incorrect: bad encoding or wrong length (empty or

too long).

IllegalStateError - if the used channel is closed.

SecurityError - if the PIN to access the SS Applet was not verified.

IOError – if the entry could not be read because of an incomplete read procedure.

(e) boolean exist(String title)

This command checks if the SS entry with the defined title exists.

Parameters:

title - the title of the entry that shall be checked. The maximum title length is 60. All

characters must be supported by UTF-8.

Errors:

IllegalParameterError - if the title is incorrect: bad encoding or wrong length (empty or

too long).

IllegalStateError - if the used channel is closed.

SecurityError - if the PIN to access the SS Applet was not verified.

Return value:

True if the entry with the defined title exists. False if the entry does not exist.

(f) Method: boolean delete(String title)

This command deletes the SS entry referenced by the title. If the entry does not exist,

nothing will be done.

Parameters:

title - the title of the entry that shall be deleted. The maximum title length is 60. All

characters must be supported by UTF-8.

Errors:

IllegalParameterError - if the title is incorrect: bad encoding or wrong length (empty or

too long).

IllegalStateError - if the used channel is closed.

SecurityError - if the PIN to access the SS Applet was not verified.

Return value:

True if the entry with the defined title is deleted. False if the entry does not exist.

(g) Method: void deleteAll()

This command deletes all SS entry referenced. If no entries exist nothing will be done.

Errors:

IllegalStateError - if the used channel is closed.

Securing the future of mobile services Open Mobile API Specification 61

Security, Identity, Mobility

SecurityError - if the PIN to access the SS Applet was not verified.

(h) Method: String[] list()

This command returns an entry list with all title-identifiers. The title is intended for the

users to identify and to reference the SS entries.

Return value:

A list of titles of all entries located in SS. An empty list will be returned if no entries

exist in the SS.

Errors:

IllegalStateError - if the used channel is closed.

SecurityError - if the PIN to access the SS Applet was not verified.

7.10.2 Secure Storage APDU Interface

The SS Applet has to provide this APDU command interface for adding entries to the SS

and deleting entries from the SS. Each SS entry is a container for a SS data record

consisting of a title and data attribute. The attribute title identifies the SS entry with a user

readable text and must be unique. The SS entry title shall be defined by the user before

the SS entry is created. Thus the user can identify the created SS entry within the SS

afterwards. The data attribute contains the sensitive data which has to be stored into the

SS. Besides the title, each SS entry can also be identified with a unique ID which is

generated by the SS during the creation and has to be used to reference an SS entry

within the SS. The title and ID must be unique within a SS, as each entry can be

referenced by either the title or the ID.

Figure 7-11: Secure Storage Applet overview

(a) CREATE SS ENTRY Command Message

The CREATE SS ENTRY command can be used to create an entry in the SS. Each

entry requires a unique title which must be specified in the command.

The CREATE SS ENTRY command message shall be coded according to the

following table:

 Secure Element (SE)

Secure Storage (SS) Applet

Title DataID

Title DataID

Title DataID
SS Entry #1

….

SS Entry #2

SS Entry #3

Securing the future of mobile services Open Mobile API Specification 62

Security, Identity, Mobility

Table 7-1: CREATE SS ENTRY Command Message

Code Value Meaning

CLA '80'

INS 'E0' CREATE SS ENTRY

P1 P2 ’00 00’

LC Length of title

DATA Title

Title of the new entry in UTF-8.
This title must be unique within the SS. If the defined
title does already exist in the SS then the error code ‘6A
80’ will be returned.

LE 2

(b) CREATE SS ENTRY Response Message

The CREATE SS ENTRY response shall contain a data field with response code ’90

00’ (successful operation) or an error response code.

Table 7-2: CREATE SS ENTRY Response Data

Value Meaning Presence

ID
The ID of the new entry created in the SS. This ID can be
used to reference an SS entry. The length of this ID is always
2 bytes.

Mandatory

Table 7-3: CREATE SS ENTRY Response Code

SW1 SW2 Meaning

‘6A’ ‘80’ Incorrect values in the command data (if the defined title does already exist)

‘6A’ ‘82’ Security status not satisfied (if PIN verified state is not set)

‘67’ ‘00’ Wrong length in LC

‘6A’ ‘86’ Incorrect P1 P2

‘6D’ ‘00’ Invalid instruction

‘6E’ ‘00’ Invalid class

‘65’ ‘81’ Memory failure (if the creation of the entry fails due to memory issues)

‘6A’ ‘84’ Not enough memory space (if not enough memory resources are available)

(c) DELETE SS ENTRY Command Message

The DELETE SS ENTRY command can be used to delete an entry from the SS. The

entry referenced in this command by an ID must exist in the SS otherwise an error

code will be returned.

The DELETE SS ENTRY command message shall be coded according to the following

table:

Securing the future of mobile services Open Mobile API Specification 63

Security, Identity, Mobility

Table 7-4: DELETE SS ENTRY Command Message

Code Value Meaning

CLA '80'

INS 'E4' DELETE SS ENTRY

P1 P2
P1: ID high byte
P2: ID low byte

The ID of the SS entry which has to be deleted.
If the SS entry couldn’t be found ‘6A 88’ is returned.

LC -

DATA -

LE -

(d) DELETE SS ENTRY Response Message

The DELETE SS ENTRY response shall contain a response code ’90 00’ (successful

operation) or an error response code.

Table 7-5: DELETE SS ENTRY Response Code

SW1 SW2 Meaning

‘6A’ ‘82’ Security status not satisfied (if PIN verified state is not set)

‘6A’ ‘88’ Referenced data not found (if the referenced SS entry does not exist)

‘6D’ ‘00’ Invalid instruction

‘6E’ ‘00’ Invalid class

‘65’ ‘81’ Memory failure (if the operation fails due to memory issues)

(e) SELECT SS ENTRY Command Message

The SELECT SS ENTRY has to be used to select an SS ENTRY in the SS for a write

or read operation.

The SELECT SS ENTRY command message shall be coded according to the following

table:

Table 7-6: SELECT SS ENTRY Command Message

Code Value Meaning

CLA '80'

INS 'A5' SELECT SS ENTRY

P1 P2
P1: Reference parameter

P2: ‘00’

Reference parameter:
Select ID(‘00’): Select the entry referenced by the ID
Select First(‘01’): Select the first SS entry
Select Next(‘02’): Select the next available SS entry

LC 2 or -
The length of the ID of the SS entry
(only needed with P1= “Select ID”)

DATA ID or -
The ID of the SS entry which shall be selected
(only needed with P1= “Select ID”)

LE ‘00’

(f) SELECT SS ENTRY Response Message

The SELECT SS ENTRY response shall contain a data field with response code ’90

00’ (successful operation) or an error response code.

Securing the future of mobile services Open Mobile API Specification 64

Security, Identity, Mobility

Table 7-7: SELECT SS ENTRY Response Data

Value Meaning Presence

Title The title of the referenced SS entry in UTF-8. Mandatory

Table 7-8: SELECT SS ENTRY Response Code

SW1 SW2 Meaning

‘6A’ ‘80’ Incorrect values in the command data (if the data field has not a length of 2 bytes)

‘6A’ ‘82’ Security status not satisfied (if PIN verified state is not set)

‘6A’ ‘88’ Referenced data not found (if the referenced SS entry does not exist)

‘67’ ‘00’ Wrong length in LC

‘6A’ ‘86’ Incorrect P1 P2

‘6D’ ‘00’ Invalid instruction

‘6E’ ‘00’ Invalid class

(g) PUT SS ENTRY DATA Command Message

The PUT SS ENTRY DATA command message can be used to store sensitive data

into the currently selected SS entry. An SS entry can be selected with the command

SELECT SS ENTRY DATA. For very long data the command PUT SS ENTRY DATA

can be used iteratively by applying the command several times with an appropriate P1

parameter (first) and (next).

Note:

Before data can be stored into the SS entry with PUT SS ENTRY DATA, the data size

has to be specified. Otherwise an error code will be returned.

The transmitted data will only be stored into the SS entry if all data parts are transferred

(this means the sum of all transferred parts fits exactly to the defined data length). As

long as the transferred data is not complete, the data has to be temporarily buffered

within the SS application. If the succeeding APDU is not a PUT SS ENTRY DATA

command or the succeeding PUT SS ENTRY DATA command does not contain the

following data as expected, then the buffered data has to be discarded.

The PUT SS ENTRY DATA command message shall be coded according to the

following table:

Table 7-9: PUT SS ENTRY DATA Command Message

Code Value Meaning

CLA '80'

INS 'DA' PUT SS ENTRY DATA

P1 P2
P1: size (0), first (1),

next(2)
P2: ‘00’

size(0): The whole size of the data that shall be stored.
first(1): DATA contains the first data part.
next(2): DATA contains the next data part (append mode).

LC Data length

DATA Data
P1=size(0): Defines the data size.
P1=first(1) or next(2): Sensitive data (or a part of the data) which has
to be stored to the currently selected SS entry.

LE -

Securing the future of mobile services Open Mobile API Specification 65

Security, Identity, Mobility

(h) PUT SS ENTRY DATA Response Message

The PUT SS ENTRY ID response shall contain a response code ’90 00’ (successful

operation) or an error response code.

Table 7-10: PUT SS ENTRY DATA Response Code

SW1 SW2 Meaning

‘6A’ ‘80’ Incorrect values in the command data

‘6A’ ‘82’ Security status not satisfied (if PIN verified state is not set)

‘6A’ ‘88’ Referenced data not found (if no SS entry is currently selected)

‘67’ ‘00’ Wrong length in LC

‘6A’ ‘86’ Incorrect P1 P2 (if the defined P1/P2 are invalid or cannot be applied)

‘6D’ ‘00’ Invalid instruction

‘6E’ ‘00’ Invalid class

'65’ ‘81’ Memory failure (if the defined data exceeds the defined size or a size was not defined)

‘6A’ ‘84’ Not enough memory space (if not enough memory resources are available)

(i) GET SS ENTRY DATA Command Message

The GET SS ENTRY DATA command message can be used to retrieve data from the

currently selected SS entry. An SS entry can be selected with the command SELECT

SS ENTRY DATA. For very long data, the command GET SS ENTRY DATA can be

used iteratively by applying the command several times with an appropriate P1

parameter (first) and (next). If the succeeding APDU is not a GET SS ENRTY DATA

command, then an outstanding retrieve procedure must be reset by the SS application.

The GET SS ENTRY DATA command message shall be coded according to the

following table:

Table 7-11: GET SS ENTRY DATA Command Message

Code Value Meaning

CLA ‘80’

INS ‘CA’ GET SS ENTRY DATA

P1 P2
P1: size (0), first (1), next(2)

P2: ‘00’

size(0): Response contains the whole size of the data that
shall be read.
first(1): Response contains the first data part.
next(2): Response contains the next data part.

LC -

DATA -

LE ‘00’

(j) GET SS ENTRY DATA Response Message

The GET SS ENTRY DATA response shall contain a data field with response code ’90

00’ (successful operation) or an error response code.

Securing the future of mobile services Open Mobile API Specification 66

Security, Identity, Mobility

Table 7-12: GET SS ENTRY DATA Response Data

Value Meaning Presence

Data

The data (or a part) of the currently selected SS entry.
or
Whole size of the data stored in the currently selected SS
entry.

Mandatory

Table 7-13: GET SS ENTRY DATA Response Code

SW1 SW2 Meaning

‘6A’ ‘82’ Security status not satisfied (if PIN verified state is not set)

‘6A’ ‘86’ Incorrect P1 P2 (if the defined P1/P2 are invalid or cannot be applied)

‘6A’ ‘88’ Referenced data not found (if no SS entry is currently selected)

‘6D’ ‘00’ Invalid instruction

‘6E’ ‘00’ Invalid class

'65’ ‘81’ Memory failure (if further data is demanded but no further data exists).

(k) GET SS ENTRY ID Command Message

The GET SS ENTRY ID command message can be used to retrieve the ID of an SS

entry referenced by the title.

The GET SS ENTRY ID command message shall be coded according to the following

table:

Table 7-14: GET SS ENTRY ID Command Message

Code Value Meaning

CLA ‘80’

INS ‘B2’ GET ENTRY ID

P1 P2 ’00 00’

LC Length of title

DATA Title Title of the entry

LE ‘02’

(l) GET SS ENTRY ID Response Message

The READ SS ENTRY ID response shall contain a data field with response code ’90

00’ (successful operation) or an error response code.

Table 7-15: GET SS ENTRY ID Response Data

Value Meaning Presence

ID
The ID of the entry in the SS referenced by the defined title.
The length of this ID is always 2 bytes.

Mandatory

Securing the future of mobile services Open Mobile API Specification 67

Security, Identity, Mobility

Table 7-16: GET SS ENTRY ID Response Code

SW1 SW2 Meaning

‘6A’ ‘82’ Security status not satisfied (if PIN verified state is not set)

‘6A’ ‘88’ Referenced data not found (if the referenced SS entry does not exist)

‘6A’ ‘86’ Incorrect P1 P2

‘6D’ ‘00’ Invalid instruction

‘6E’ ‘00’ Invalid class

(m) DELETE ALL SS ENTRIES Command Message

The DELETE ALL SS ENTRIES command can be used to delete all entries from the

SS.

The DELETE ALL SS ENTRIES command message shall be coded according to the

following table:

Table 7-17: DELETE ALL SS ENTRIES Command Message

Code Value Meaning

CLA ‘80’

INS ‘E5’ DELETE ALL SS ENTRIES

P1 P2 ’00 00’

LC -

DATA -

LE -

(n) DELETE ALL SS ENTRIES Response Message

The DELETE SS ENTRIES response shall contain a response code ’90 00’ (successful

operation) or an error response code.

Table 7-18: DELETE ALL SS ENTRIES Response Code

SW1 SW2 Meaning

‘6A’ ‘82’ Security status not satisfied (if PIN verified state is not set)

‘6D’ ‘00’ Invalid instruction

‘6E’ ‘00’ Invalid class

‘65’ ‘81’ Memory failure (if the operation fails due to memory issues)

7.10.3 Secure Storage APDU transfer

This chapter describes how the SS APDU interface has to be applied for performing the

SS service operations provided by the SecureStorageProvider.

Note:

All SS operations have to be realised in an atomic way. This means if an error occurs

during a SS operation (e.g. if an error occurs on a certain APDU) all modifications made

on the SS (in the previous steps within a SS operation) have to be reversed.

Securing the future of mobile services Open Mobile API Specification 68

Security, Identity, Mobility

(a) Create operation

The create method includes the creation and selection of an SS entry with a

succeeding SS entry data update. Following steps are needed:

 CREATE SS ENTRY (tile) creates the SS entry in the SS with the defined title.

 SELECT SS ENTRY (ID) selects the SS entry in the SS for the data update.

 PUT SS ENTRY DATA (size) to define the data size.

 PUT SS ENTRY DATA (data) writes the data to the selected SS entry. A long data

chain (which cannot be transferred via one APDU command) can be written by

applying the command iteratively by using PUT SS ENTRY DATA(P1P2=NEXT)

several times after performing PUT SS ENTRY DATA(P1P2=FIRST).

Figure 7-12: Create SS entry operation

Note:

If an error occurs during the create operation, all previous steps must be reversed to

obtain the same SS state as before. For example, if the creation of the SS entry was

successful but the storage of the SS entry data fails, then this newly created SS entry

has to be deleted again.

(b) Update operation

The update method includes the selection of an SS entry with a succeeding SS entry

data update. The following steps are needed:

 GET ENTRY ID (title) returns the internal SS entry ID to the defined title.

 SELECT SS ENTRY (ID) selects the SS entry in the SS for the data update.

 PUT SS ENTRY DATA (size) to define the data size.

 PUT SS ENTRY DATA (data) writes the data to the selected SS entry. A long data

chain (which cannot be transferred via one APDU command) can be written by

applying the command iteratively by using PUT SS ENTRY DATA (P1P2=NEXT)

several times after performing PUT SS ENTRY DATA (P1P2=FIRST).

Figure 7-13: Update SS entry operation

Note:

If an error occurs during the update operation, all previous steps must be reversed to

obtain the same SS state as before. For example, if the update of some data parts was

 void create(String title, byte[] data)

ID = CREATE SS ENTRY (title)

SELECT SS ENTRY (ID)

PUT SS ENTRY DATA (size)

PUT SS ENTRY DATA (FIRST, data first part)

PUT SS ENTRY DATA (NEXT, data next part)

 void update(String title, byte[] data)

ID = GET SS ENTRY ID (title)

SELECT SS ENTRY (ID)

PUT SS ENTRY DATA (SIZE, size)

PUT SS ENTRY DATA (FIRST, data first part)

PUT SS ENTRY DATA (NEXT, data next part)

Securing the future of mobile services Open Mobile API Specification 69

Security, Identity, Mobility

successful but the update of a following data part fails then the SS entry has to be set

to the previous state (e.g. by reassigning the previously stored data to the SS entry).

(c) Read operation

The read method includes the selection of an SS entry with a succeeding read SS

entry data operation. The following steps are needed:

 GET ENTRY ID (title) returns the internal SS entry ID to the defined title.

 SELECT SS ENTRY (ID) selects the SS entry in the SS for the read operation.

 GET SS ENTRY DATA (size) to determine the whole size of the data that shall be

read.

 GET SS ENTRY DATA (data) reads the data to the selected SS entry. A long data

chain (which cannot be transferred via one APDU command) can be read by

applying the command iteratively by using GET SS ENTRY DATA (P1P2=NEXT)

several times after performing GET SS ENTRY DATA (P1P2=FIRST).

Figure 7-14: Read SS entry operation

(d) List operation

The list method includes an iterative selection of all SS entries. The following steps are

needed:

 SELECT SS ENTRY (FIRST) selects the first SS entry and returns its title.

 SELECT SS ENTRY (NEXT) selects the next SS entry and returns its title. This

command has to be applied iteratively until all SS entry titles are retrieved.

Figure 7-15: List SS entries operation

(e) Delete operation

The delete method includes a delete operation. The following steps are needed:

 GET ENTRY ID (title) returns the internal SS entry ID to the defined title.

 DELETE SS ENTRY (ID) deletes the SS entry referenced by the defined ID.

byte[] read(String title)

ID = GET ENTRY ID (title)

SELECT SS ENTRY (ID)

data =+ GET SS ENTRY DATA (NEXT)

data = GET SS ENTRY DATA (FIRST)

size = GET SS ENTRY DATA (SIZE)

 String[] list()

title list = SELECT SS ENTRY (FIRST)

title list =+ SELECT SS ENTRY (NEXT)

 boolean delete(String title)

ID = GET ENTRY ID (title)

DELETE SS ENTRY (ID)

Securing the future of mobile services Open Mobile API Specification 70

Security, Identity, Mobility

Figure 7-16: Delete SS entry operation

(f) Delete all operation

The delete all method includes a delete operation which deletes all entries from the

SS. The following steps are needed:

 DELETE ALL SS ENTRIES

Figure 7-17: Delete all SS entries operation

(g) Exist operation

The exist method checks if a certain SS entry exists. The following steps are needed:

 GET ENTRY ID (title) returns the internal SS entry ID to the defined title.

 SELECT SS ENTRY (ID) indicates if the SS entry to the defined ID exists or not.

Figure 7-18: Exist SS entry operation

7.10.4 Secure Storage PIN protection

Before a SS command can be performed, a PIN verification has to be performed towards

the SS Applet. The SS Applet allows the execution of an APDU command only after a

successful PIN verification. Therefore the SS Applet stores an internal PIN verified state

for each logical channel. Thus an established logical channel has to be authorised with a

PIN verification before this channel can be used for the SecureStorageService. The

internal PIN verified state for a channel is kept up until this channel is closed. If a SS

APDU command is used without being authorised with a PIN, the SS Applet has to return

an error code indicating the missing privilege.

To provide the SS access restriction based on PIN authentication, the SS Applet must

provide the ISO/IEC 7816-4 commands VERIFY, CHANGE REFERENCE DATA and

RESET RETRY COUNTER for supporting the Authentication Service methods

verifyPin(byte[] pin), changePin (byte[] oldPin, byte[] new Pin) and resetPin(byte[]

resetPin, byte[] newPin). The SS can also provide other PIN related ISO/IEC 7816-4

commands like DISABLE VERIFICATION REQUIREMENT, ENABLE VERIFICATION

REQUIREMENT for allowing extended PIN management with the Authentication Service

methods deactivatePin(byte[] pin) and activatePin(byte[] pin).

 void deleteAll()

DELETE ALL SS ENTRIES

 boolean exist(String title)

ID = GET ENTRY ID (title)

SELECT SS ENTRY (ID)

Securing the future of mobile services Open Mobile API Specification 71

Security, Identity, Mobility

8. Recommendation for a Minimum Set of Functionality

SE access is essential for secure applications. As a result, any mobile device compliant with the Open

Mobile API must provide access to all SEs on the device. The Transport API (with access to all SEs

available in the device, e.g. SIM, microSD and eSE) is therefore mandatory for Open Mobile API

compliant devices. A mobile device which has a SE with no access to the Transport API would not be

considered compliant with the Open Mobile API.

The most common SEs today are SIM cards, secure SD cards or embedded SEs. But new SEs may

emerge in the future. The SE provider interface is therefore mandatory, to ensure that the device can

support new SEs in the future.

The Transport API shall support the maximum number of extended logical channels according to ISO

7816-4 specification (19 logical channels in addition to the basic channel).

In case the ATR is not available, or the ATR is available and indicates the support of 8 or more channels

(including the basic channel), the API shall try to open logical channels, provided no error is indicated.

In case the ATR is available and indicates support of 7 or less channels (including the basic channel),

the API shall manage as many logical channels as indicated by the ATR, either by using the ATR

information or by opening logical channels, provided no error is indicated.

The Transport API shall support extended length APDU commands independent of the coding within

the ATR.

These following components can be provided by device manufacturers or third parties:

 Discovery API

 Crypto API

 Secure Storage

 File Management

 Authentication

 PKCS#15

The mobile device should allow the installation of these services as an add-on API.

Securing the future of mobile services Open Mobile API Specification 72

Security, Identity, Mobility

9. Secure Element Provider Interface

This provides a way to add and remove drivers for SEs at runtime, by installing or removing

downloadable application packages. It enables communication with the SE.

The concrete API of such a SE Provider Interface is up to the individual implementer of the Open Mobile

API and not defined in this document.

The following requirements, however, must be fulfilled:

 The implementation has to enforce that it is only used by the Transport Layer and not directly by

mobile applications (so channel management and security mechanism in the transport layer cannot

be bypassed).

 A reference implementation needs to be available.

 Existing SE Providers cannot be replaced by dynamically loaded providers.

Securing the future of mobile services Open Mobile API Specification 73

Security, Identity, Mobility

10. Access Control

Access Control is used by the Transport and Service Layers. It is based on the signature of the mobile

application and is enforced when accessing the Transport Layer.

The permission is based on access policies stored in the SE. These access policies define precisely

which mobile application is allowed to access an applet installed in the SE.

The APIs in this specification will indicate errors (e.g. declaring security errors) when they are subject to

the Access Control.

Access Control itself is defined by GlobalPlatform in the SE Access Control Working Group (see [9]).

Securing the future of mobile services Open Mobile API Specification 74

Security, Identity, Mobility

11. History

Table 11-1: History

Version Date Author Comment

1.0 28.02.2011 SIMalliance Initial Release 1.0

1.01 16.03.2011 SIMalliance Minor corrections

1.1 04.05.2011 SIMalliance Clarifications for several functions in the transport layer

1.2 12.07.2011 SIMalliance Correction for open Basic Channel

2.0 30.09.2011 SIMalliance
Adding descriptions of the service layer, corrections in the
transport layer, adding getSelectResponse() to channel class

2.01 14.10.2011 SIMalliance Minor corrections

2.02 4.11.2011 SIMalliance Corrections in diagrams of the transport layer

2.03 19.06.2012 SIMalliance
Clarification on Chapter 10 (since GlobalPlatform SEAC spec is
released), on 6.4.4. and 6.7.6 / 6.7.7

2.04 15.07.2013 SIMalliance
Clarification on Chapter 5, 6.2, 6.7.6, 6.7.7, 6.8.6, 7.1, 7.6.1,
7.6.3, 7.6.4, 7.6.5, 7.8.1 and chapter 8. Added 6.4.5, 6.8.7

2.05 28.01.2014 SIMalliance

Chapter 3, clarification on the namespace; Chapter 6.4.2:
IllegalStateError added; Chapter 6.6.1 changed definition of
reader name according request from GSMA; Chapter 6.8.6:
clarification on handling of status words

3.0 draft4 26.08.2014 SIMalliance

Procedural interface added to chapter 6; reference header for
Ansi-C defined in Annex; P2 parameter added for
openBasicChannel and openLogicalChannel (previous interface
without P2 is kept but deprecated)

Securing the future of mobile services Open Mobile API Specification 75

Security, Identity, Mobility

Annex A: Ansi-C Reference Header for Transport Procedural Interface
/* omapi.h

 * Copyright (c) 2014 SIMalliance.org*/

#ifndef __omapi_h__

#define __omapi_h__

#ifdef __cplusplus

extern "C" {

#endif

/* platform specific mapping of SIMalliance data types */

#ifndef OMAPI_API

#define OMAPI_API

#endif

typedef int OMAPI_RESULT;

typedef int OMAPI_HANDLE;

typedef int Int;

typedef char * String;

typedef unsigned char Byte;

typedef enum { false, true } Boolean;

/* SIMalliance return codes */

#define OMAPI_SUCCESS ((Int)0x00000000) /* No error was encountered */

#define OMAPI_GENERAL_ERROR ((Int)0x10000000) /* A general error occurred */

#define OMAPI_IO_ERROR ((Int)0x10000001) /* Communication error */

#define OMAPI_NO_SUCH_ELEMENT_ERROR ((Int)0x10000002) /* No such element error */

#define OMAPI_ILLEGAL_STATE_ERROR ((Int)0x10000003) /* Illegal state of execution error */

#define OMAPI_ILLEGAL_PARAMETER_ERROR ((Int)0x10000004) /* Illegal or invalid parameter */

#define OMAPI_ILLEGAL_REFERENCE_ERROR ((Int)0x10000005) /* Illegal reference */

#define OMAPI_OPERATION_NOT_SUPPORTED_ERROR ((Int)0x10000006) /* Operation not supported from SE */

#define OMAPI_SECURITY_ERROR ((Int)0x10000007) /* Security Error blocks execution */

#define OMAPI_CHANNEL_NOT_AVAILABLE_ERROR ((Int)0x10000008) /* No channel available */

#define OMAPI_NULL POINTER_ERROR ((Int)0x10000009) /* Null pointer not allowed */

Securing the future of mobile services Open Mobile API Specification 76

Security, Identity, Mobility

/* SIMalliance Open Mobile API */

OMAPI_API OMAPI_RESULT omapi_get_readers(OMAPI_HANDLE *phReaders, Int *pLength);

OMAPI_API OMAPI_RESULT omapi_get_version(String pVersion, Int *pLength);

OMAPI_API OMAPI_RESULT omapi_reader_get_name(OMAPI_HANDLE hReader, String pReader, Int *pLength);

OMAPI_API OMAPI_RESULT omapi_reader_is_secure_element_present(OMAPI_HANDLE hReader, Boolean *pIsPresent);

OMAPI_API OMAPI_RESULT omapi_reader_open_session(OMAPI_HANDLE hReader, OMAPI_HANDLE *phSession);

OMAPI_API OMAPI_RESULT omapi_reader_close_sessions(OMAPI_HANDLE hReader);

OMAPI_API OMAPI_RESULT omapi_session_get_reader(OMAPI_HANDLE hSession, OMAPI_HANDLE *phReader);

OMAPI_API OMAPI_RESULT omapi_session_get_atr(OMAPI_HANDLE hSession, Byte *pAtr, Int *pLength);

OMAPI_API OMAPI_RESULT omapi_session_close(OMAPI_HANDLE hSession);

OMAPI_API OMAPI_RESULT omapi_session_is_closed(OMAPI_HANDLE hSession, Boolean *pIsClosed);

OMAPI_API OMAPI_RESULT omapi_session_close_channels(OMAPI_HANDLE hSession);

OMAPI_API OMAPI_RESULT omapi_session_open_basic_channel(OMAPI_HANDLE hSession, Byte *AID, Int length, Byte

P2, OMAPI_HANDLE *phChannel);

OMAPI_API OMAPI_RESULT omapi_session_open_logical_channel(OMAPI_HANDLE hSession, Byte *AID, Int length,

Byte P2, OMAPI_HANDLE *phChannel);

OMAPI_API OMAPI_RESULT omapi_channel_close(OMAPI_HANDLE hChannel);

OMAPI_API OMAPI_RESULT omapi_channel_is_basic_channel(OMAPI_HANDLE hChannel, Boolean *pIsBasicChannel);

OMAPI_API OMAPI_RESULT omapi_channel_is_closed(OMAPI_HANDLE hChannel, Boolean *pIsClosed);

OMAPI_API OMAPI_RESULT omapi_channel_get_select_response(OMAPI_HANDLE hChannel, Byte *pSelectResponse, Int

*pLength);

OMAPI_API OMAPI_RESULT omapi_channel_get_session(OMAPI_HANDLE hChannel, OMAPI_HANDLE *phSession);

OMAPI_API OMAPI_RESULT omapi_channel_transmit(OMAPI_HANDLE hChannel, Byte *pCommand, Int cmdLength, Byte

*pResponse, Int *pRspLength);

OMAPI_API OMAPI_RESULT omapi_channel_transmit_receive_response(OMAPI_HANDLE hChannel, Byte *pResponse, Int

*pRspLength);

OMAPI_API OMAPI_RESULT omapi_channel_select_next(OMAPI_HANDLE hChannel, Boolean *pSuccess);

#ifdef __cplusplus

}

#endif

Securing the future of mobile services Open Mobile API Specification 77

Security, Identity, Mobility

#endif

